20．土木工事施工管理基準運用方針

目 次

1．適用範囲 20－1
2．出来形管理 20－1
3．品質管理 20－1
4．写真管理 20－1
別添—1 出来形関係図書の作成要領（案） 20－2
別添—2 品質管理関係図書の作成要領（案） 20－12
別添－3 写真管理要領 20－15

土木工事施工管理基準運用方針

1．適用範囲

この施工管理基準運用方針は，土木工事施工管理基準に基づき土木請負工事に適用する。

2．出来形管理

（1）出来形管理は，出来形の検測が基礎であり，測定にあたっては正確に行わ なければならない。施工完了後明視できない部分については写真管理と併用 して入念に測定して記録しておかなければならない。
測定は，測定基準に示されている測定箇所とその頻度により検測を実施す るものとする。
（2）出来形管理のまとめ方は，別添－1に示された出来形関係図書の作成要領 （案）によるものとする。
3．品質管理
品質管理のまとめ方は別添－2 に示された品質管理関係図書の作成要領（案）に よるものとする。

4．写真管理

別添－3に示された撮影方法により，出来形確認及び工事の状況を撮影するも のとする。

別添－1

出来形関係図書の作成要領（案）

出来形管理の考え方

出来形関係図書は工事の進行に伴って順次，実測 \rightarrow 記録 \rightarrow 整理されるものである から，工事着手前に出来形を管理する工種，内容，測定時期等を定めて手順よく実施しなければならない。特に施工完了後明視できない箇所（埋戻又は水没する箇所等）は実測漏れのないよう慎重に実施しなければならない。

1．一 般

1）出来形関係図書に掲上される諸寸法，数値は現地を正確に実測したものでな ければならない。
2）出来形関係図書とは出来形図及び出来形成果表をいう。
3 ）出来形関係図書は，特に指示のない限り工事検査員用として提出する必要は ない。

2．作成方法

1）出来形関係図書は土木工事施工管理基準に示す各工種毎の手順によって作成 する。なお特殊な工種についてはこれ等に準じて作成する。
2）出来形図，出来形成果表に記入する実測寸法は特に明示されない限り出来形管理基準に示す実測単位まで正確に実測したものでなければならない。
3 ）簡易な工種については出来形図の中に出来形成果表および数量計算を併記し てもよい。

3．出来高数量計算書

1）出来形が設計寸法に対して規格値を満足していれば出来高数量計算は設計寸法で行らものとする。

\square
工工 出 来 形 成 果 表

\square

$$
\begin{array}{lll}
\text { 基鹪高 } & \mathrm{H} & \text { 施工延長20mにつき 1䈯所 } \\
\text { 幅 } & \mathrm{a}_{1} & \\
\text { 幅 } & \mathrm{a}_{2} & \\
\text { 幅 } & \mathrm{a}_{3} & \\
\text { 幅 } & \mathrm{W} & \\
\text { W } & \\
\text { 高 } & \mathrm{h}_{1} & \\
\text { 高 } & \mathrm{h}_{2} & \\
\text { 延 } & \text { 長 } & \mathrm{L}
\end{array}
$$

コンクリート管渠エ 出 来 形 成 果 表（例）

	主任監督員

${ }_{(\text {送位m）}}$

工事番号

工事番号					工事名							現場代理人				（10）		施工管理担当者	
測定綯所		H			a			W			h_{1}			h_{2}			L		
規格値		± 30			－50		$\begin{array}{\|l\|l\|} \hline-30 ク リ \mid \\ \hline \end{array}$				－30			－30			－100		測定年月
側 転	設計值	実測値	差	設計値	実測値	差	設計値	実測値	差	設計值	実測値	差	設計値	実測值	差	設計值	実測値	差	

緵括監督員	主任監督員

施工管理担当者
現場代理人 (10)
测定基熦）

$$
\begin{array}{l|l}
\text { (10) } \\
\hline & \text { (单位m) } \\
\hline & \\
\hline
\end{array}
$$

\square
ت
ब
工事番号

出 来 形 図（例）

総括監督員	主任監督員

工事番号 \qquad現場代理人 （⿻ㅛ）施工管理担当者
（1）

ボックスカルバート（例）測点NO． 1単位 mm
（ ）……実測値
又は，赤色で記入も可

単位 m
（ ）……実測値
又は，赤色で記入も可
$\times \cdots \cdots$ •破壊検査箇所

\section*{鋼矢板出来形偏心図（例）
 | 総括監督員主任監督員 | |
| :--- | :--- |
| | |
| | |}

注：鋼矢板の偏心は法線に対する鋼矢板のジョイントの中心との差で表示する。測定位置は大きな変化のみとらえればよい。
（規格値 100 mm ）

	縦	$1 / 100$
	横	$1 / 300$

65， 000

別添－2

品質管理関係図書の作成要領（案）

品質管理の考え方

品質管理関係図書は工事監督ならびに施工者の工事施工管理上必要な資料であっ て，施工途時に行う品質試験はその都度整理し，考察を行いそれ等のデーターや計算結果は次の品質管理に利用されるものであり，工事検査受検のための品質管理で はない。工事検査時には日々の管理状態を把握し，品質管理結果を知るため，資料 の提示を求めているのに過ぎないのである。品質管理を行う以上は，工事の途中に おいて生じた品質上の問題点について適切な処置を講じ，それらが記録されていな ければならない。

1．一 般

1）品質管理関係図書とは次の図書をいう。
（1）試験データー資料
各種の試験および測定された資料。
（2）ヒストグラム（柱状図）
品質の分布状態が全体的に把握出来るもの。
（3）工程能力図（折線グラフ）
時間的，位置的な品質の変動が目で確認できるもの。
（4）管理図（データーシートを含む）
工事施工中において統計的手法により品質管理を行ったもの。
2）品質管理計画書
品質管理を実施しようとする場合は設計図書の内容により，試験方法，試験 （測定）回数についてどの様に実施しなければならないかを把握し，管理すべき項目を決めるため，施工計画書の中に品質管理計画書を作成しておかなければ ならない。

2．作 成 方 法

品質管理計画書の作成方法
手順1．設計図書を分解し品質管理を行うべき品質特性，試験種目，試験頻度を決定する。
手順2．手順1により決定した品質特性，試験種目，試験頻度により品質管理計画書を作成する。

ヒストグラム

品質特性が規格を満足しているかどうかは，ヒストグラムによって調べる。
ヒストグラムとは，横軸にデータの値をとり，データ全体の範囲をいくつかの区間に分け，各区間に入るデータの数を数えて，これを縦軸にとつて作られた図のこ とで，柱状になっていることから柱状図とも言われている。
規格は一般に規格値として示される。
規格値とは，品質特性について，製品の許容できる限界値を設定するため，規格中に与えられている限界の値で，上限または下限を定めた片側規格値と，上下限両方を定めた両側規格値がある。土木工事の場合は，土木工事施工管理基準のなかで，品質および出来形の規格値として示される。

工程能力図

工程能力図は得られたデータが規格値を満足しているかどうかのチェックに用い られる連続的な表示方法である。

これにより規格の現況，能力等を見る。したがって統計的な考え方が使われてお らず，工程上異常があるかどうかの判断はできない。

しかし規格値に対するデータの変動の様子を連続的につかまえることができる。
工程能力図の作り方は調べようとする対象の集団を区画割して（工区等）合理的 な群にして各群の中で時間順序に従ってデータを記入していくのである。

工程能力図は非常に簡単に作れる。グラフ用紙を用意し，横軸にサンプル番号を，縦軸に特性値を目盛り，上下規格値を示す線を引く。各データはそのまま打点し各点を実線で結べばよい。

$\bar{\chi}-\mathrm{R}$ 管理図（エックスバー，アール管理図）

この管理図は最も多く用いられるもので，重さ，長さ，時間などの計量値に用い られている。

义は群の平均値，Rは群の範囲である。したがって $\bar{\chi}$ 管理図では平均値の変動を管理しR管理図では群の分布の巾を管理するのに用いる。即ちこの 2 つの $\bar{\chi}$ と R 管理図を対にして群の平均値の変動とバラツキの変化とを同時に見ていくことによって工程分布の状態をつかまえていく管理図である。

R管理図は群の大きさ n が 10 より大きくなると性能が悪くなるので，一般に n が 10以下の場合に用いる。

$\chi-\mathrm{R}_{\mathrm{s}}-\mathrm{R}_{\mathrm{m}}$ 管理図

個々のデータをそのまま時間的，空間的順序に並べて管理していくもので一点管理図と云う。データが一つあれば直ちに打点できるので工程の状態を早く判定でき る。従って早く処置がとれる特長があるが管理図の性能は $\bar{x}-\mathrm{R}$ 管理図より劣る。 しかし1個のデータをとるのに時間がかかる場合又は試験に多額の費用がかかる場合などのとき便利である。ここで R_{s} とは相隣る値の差の絶対値をとり，$x-\mathrm{R}_{\mathrm{s}}$ 管理図として用いるのが普通であるが，建設工事の場合のコンクリートの強度の場合の ように，同一バッチからとった 3 個の供試体の平均強度によって 1 個のデータとみ なす場合などについては測定誤差の管理も併せて行う。この場合も範囲Rを用いる ので $\bar{\chi}-\mathrm{R}$ 管理図の R と区別するために R_{m} としている。

別添－3

写真管理要領

第1．総 説

工事写真は工事の施工管理（品質管理，出来形管理，工程管理等）に積極的に利用する必要があり不時の際（災害による工事の手戻り等）における出来形を証明す る唯一の資料でもあるから，工事着手前から完成まで工事写真の整備に努めなけれ ばならない。

1．工事写真の要件

工事写真は後で判定の資料として用いる報告文に類するものであるから，（1） いつ（ 2 ）どこで（ 3 ）だれが（ 4 ）いくら（ 5 ）なにをしていたかの 5 つの要素を織り込んだものでなければ意味のない写真になる場合が多い。
具体的には，
（1）いつ
工事は常に進捗しており，撮影の「時」は施工順序，工程及び進捗情況等 の判定に欠くことができない。
（2）どこで
撮影の「場所」の確認も工事写真として欠くことができない。後で確認の できる背景をいれるとか黒板を利用しよう。
（3）だれが
この場合受注者の選択した工法ということになる。
（4）いくら被写体の数量が確認できるものでなければ出来形写真の要件を欠く。
（5）なにを
この場合は県が注文した土木工事の構造物等を示す。

2．撮影計画

工事の施工計画書を作成する際に，工事写真の撮影計画も併せて行わなければ ならない。

この計画には「土木工事施工管理基準」4．写真管理基準 2．工事写真の分類 に示した写真の種類ごと工事工程に合せ，次に掲げる内容を盛り込む。
1．撮影方針
（1）担当者（責任担当者のほか $1 \sim 2$ 名）
（2）撮影枚数（密度）
（3）時 期
（4）方 法
（5）場 所 等

2．出来形写真については1のほか土木工事共通仕様書，設計図書及び監督員の定める出来形管理の寸法測定点（撮影点）等を検討し，各工種ごとの進捗予定 に適応した撮影計画表を作成する。

3．撮影の実施

1．担当者は工事の進捗状況に十分注意すると共に，各々の現場の担当者間との連絡を密にし，目的及び撮影計画に合致したよい写真を写すよう務めなければ ならない。
2．監督員の立会を受けることに定められている工種の撮影に当っては，その立会のもとに実施する。
3．実施に当って 1 の要件が写真に表われない場合，又は表わすことができない場合には，一枚ごとに撮影が済んだ段階で，フィルム番号及び1の要件の中の要素について記録しておかなければならない。
4．重要部分については不良撮影による撮り直し防止のため，2枚以上の撮影或 いは 2 台のカメラでの同時撮影等も考える。
5．工事写真撮影上の一般的留意事項
（1）写真は，被写体に対するカメラ位置によって極端に映像が変わるもので，測定尺をあてて寸法を表示する写真を撮影する場合，被写体に対しカメラ を斜めに構えて撮影すると，正確に寸法の表示がされない場合が多い。従 ってカメラ位置は被写体の中心でしかも直角の位置から撮影をすることが大原則である。
（良い撮り方）

ア．写された測定尺の寸法が正確に読みとれなければ出来形写真としては不適格ともいえる。このため撮影者は姿勢を低くして，つまり本体とあて木の

合致面よりもレンズの中心が下るようにすれば，測定尺が正確に読み得る写真を撮ることができる。
イ．「悪い撮り方」の場合，被写体との角度が鋭角になるほど，又あて木が厚いほど写真に表われる寸法は短く写る。
ウ，地形等との関係上どうしても鋭角でないと撮れない場合でも，極く薄い あて木を用いるとか，水糸を張る等の工夫をすれば，撮影角度による誤差の ない写真を撮ることができる。
（2）写真の映像及び測定尺の目盛りをはっきりさせるためには（焦点の奥行を深めるために），カメラの絞りをできるだけ絞って（従ってシャッターはスロ ーにして）撮るとよい。
（3）次の場合には見た目と実際の明るさに差があるので，露出に注意し，特に被写体の明るさ（床掘等で日影になっている部分を撮影する場合には日影の部分の明るさ）に合せた露出にしなければならない。
ア．見た目より明るいもの（露出過度に注意）
海岸，青空，晴天時の積雪部等
イ．見た目より暗いもの（露出不足に注意）
晴天時の影の部分，坑内，屋内等
（4）現場の状況，撮影者の足場等によって逆光線撮影しかできない場合は，（a） ストロボを使う（b）カメラアングルを考える（c）フードを使う（d）絞 りをできるたけ絞る等してハレーション防止に努めなければならない。以上，天候，場所，被写体いずれも千差万別であり，その現場，被写体に適合した最適の工夫をすることが必要である。

第2．工事状況写真

1．着工前の写真

工事着工前に工事区間全体の状況が判断できる写真を撮影する。その詳細は
（1）起終点及び工区全体を写すものとし，同一画面に収まらない場合はつなぎ写真（パノラマ写真）とする。
（2）起終点位置をはつきりさせるために，ポール等を立てる。
（3）人家，立木屈曲等の多い場合は，追写真とする。追写真は，河川は上流側 から下流側を望み，道路は起点側から終点側を望み撮影する。
（4）パノラマ撮影の場合は，必ず三脚等を用い，カメラを水平に移動して行う。
（5）撮影時期は，丁張設置後，工事着工直前にすること。計画も判然とするの で効果的である。
（6）着工前，施工中，完成の写真のそれぞれが関連づけのあるものにするため，撮影計画書又は着工前の写真の下に撮影場所（○○火の見櫓ノ○○山展望台， ○○ビル屋上等）を記録しておくものとし，追写真の場合は，撮影箇所の略図を作成する。

（7）撮影箇所と同じく撮影年月日も記録しておくものとする。

2．施工中の写真

（1）構 成
施工中の写真には，次のようなものが挙げられる。
○ 工事実施中の写真
－検収写真
○品質確認写真

- 出来形確認写真
- その他の施工中の写真
（2）工事実施中の写真
この写真は第 $2-1$ の着工前の写真と同規模の全体的なもの，主要構造物 の施工中のもの，重機械の稼働状況又は，組合せ施工中のもの，特殊工法の施工中のもののほか仮設物又は仮設備の状況写真等がある。これらの工事実施中の写真は，原則として工事ごとに施工中，完成後に各々の工事段階に合 わせて撮影を行うものとするが，工事の形態等により撮影密度を一定とする ことは難しいので，受注者はその詳細について監督員と協議するものとする。
また，この写真は，第2の出来形写真とともに施工方法，施工時期，出来高，工程の進捗状況等の記録となり，総体的な判定の資料に用いられること があるので，撮影にあたっては，風景的なもののみにとらわれることなく工夫することが大切である。
（3）検収写真
この項でいう検収写真とは，工事に使用される材料のうち使用後において寸法，数量等が確認出来ないものについて現場に搬入された場合，受注者に おいて，使用前に撮影を行い，形状，寸法，数量等が後日確認できるように しておくものである。こらのうち主なものは
（1）路盤材料
（2）基礎砕石
（3）目地板
（4）杭及び矢板類
（5）積石
⑥石等沈石（7）地下排水
（8）管用敷砂利，フィルター砂

等がある。このほか工種により種々の材料があるが，検収写真は，次の要領 で撮影する。
（1）寸法確認写真
イ．ブロック又は積石の控長又は長径等は，次図のように写し，1組の検収写真とする。

また 1 個の重量で指定されている場合は，計量中の材料と関連のある写真とする。
ロ・杭，管，矢板，方角材等については，長さ，径等について下図要領で撮影する。

八。骨材（砕石，路盤材料等）及び沈床用詰石の寸法（最大，最小径）は，築造又は構造物の品質にもつながることから，非常に重要視されるもの

であるが，これら寸法法を表示する写真撮影は非常に難しい。しかし，寸法でミリメートル単位まで読めなくとも，マッチ，又はタバコ等を同時に撮影することにより関連のわかる判定資料となるので工夫して撮影するものとする。
（1）数量確認写真
施工後出来高が確認又は明視できなくなる材料（例，工事用道路又は補修用砂利，沈床詰石数量，乱積工法のブロック等）については，現場搬入後，使用前に数量が確認できる写真を撮影する。

野積み検収を行う場合は，次の要領により撮影する。

（4）品質確認写真
施工管理の一環として実施される品質管理の実施状況を撮影する。
品質には，材料の品質，施工後の構造（築）物の品質があるが，前者は材料試験のデータ又は，材料製造元の試験成績等により確認でき，また通常施工に当っての品質管理も行わないので，後者が対象となる。

後者は，現場において，調合又は加工の上，形成されるもので，施工時に は施工管理が行われ，その結果は，管理図等に記録されるが，試験又は測定実施中の写真を記録として残し，試験または測定の結果表とともに品質確認 の資料とするものであり，その撮影対象（被写体）及び撮影基準は，「土木工事施工管理基準」 4．写真管理基準 別紙撮影箇所一覧表によるものとする。
（5）出来形確認写真
「土木工事施工管理基準」4．写真管理基準 別紙撮影箇所一覧表の基準に よって行うが，施工後明視或いは測定が不可能な所（床掘及び工事完成後地中，水中となる部分）については出来形確認の唯一の資料となるので撮り落 し，不良撮影のないよう注意する必要がある。又撮影については，細部撮影方法及び注意事項（ $19-24 \sim 41$ ）を参照すること。
（6）その他の写真
この項目でいうその他の写真とは，工事施工中の一般写真で，PR写真，一般的施工状況写真で，特に監督員の指示のない限り撮影する必要はない。

3．工事完成写真

完成写真は，全景及び部分の 2 種類に分類される。全景写真は，着工前の写真 （19－18）に準じて撮影する。

部分完成写真は，主要工種ごと又は，主要構造物ごとに撮影する。この場合 1方向 1 枚に限らず構図，採光等を考慮して，できるだけ数多く撮影しておくと，着工，施工，完成の工程確認用のみでなく，PR写真として使用することもできる。

4．安全管理関係写真

安全管理関係として，防備施設，標識施設，交通処理状況，事故対策施設等が あるが，これらの写真は，一旦事故が発生した場合の原因探究，現場の安全管理状況の証明用として，必ず撮影しなければならない写真である。この場合，工事写真の要件（ $19-15$ ）のらち，特に日時が判然とするようにしなければならない。

第3．災害写真

1．一 般

この項でいう災害とは，天災地変その他不可抗力による損害の場合を指し，工事中災害写真は請負工事施工途中におけるこれら災害についての費用負担区分の判定に必要な資料として欠くことができない。

この災害写真も，前述各項の一般工事写真と同様の要素が満たされていなけれ ばならないのはいうまでもないが，一部異なった点から撮影を実施しなければな らない。

これは，工事状況写真と同じように，被災前，被災中，被災後の状況組写真が あれば良いということで，この組写真が資料として揃うよう，工事の進捗と合せ て常に状況が判定できる写真を写しておくことが望ましい。

2．河川工事災害

（1）被災前の写真
これはあることが望ましい写真であって，工事状況写真の撮影の項を参照 して実施する。
（2）被災中の写真
洪水中，内水湛水中，又は漏水中及び冠水中の写真及び応急措置等の写真 をできるだけ多く撮影するものとし，可能な場合は，測定尺を用い水深，そ の他の状況を判断できるよう工夫する。
（3）被災後の写真
（1）被災箇所の全域及びその付近の状況を示す全ぼら写真を撮影する。
この場合，被災箇所の起終点には，目的となる箱尺又はポール等を立て， また最高位を示す洪水のこん跡が写るように工夫し，写された写真には，水位，流水方向等を記入する。
（2）部分写真は，被災部分の状況が判るよう（できれば寸法も判るよう）で きるだけ詳細に撮影する。撮影は，下流側から順次上流側に行う。

この写真に記入する事項は，出水位，流水方向，被災前の状況線とする。
（4）整理
整理は，被災箇所ごとに被災前，被災中，被災後の関連が判るよう行いア ルバムに貼り付ける。写真には1枚ごとに箇所番号，位置，撮影年月日，時刻，その他必要事項の説明を付し，同事項を写真の裏にも記入しておくもの とする。

3．道路，海岸，砂防，その他の工事災害

河川工事災害を準用する。

〔細部撮影方法及び注意事項〕

出来形寸法の写真撮影方法及び注意事項は，下記に示すとおりである。

工	種	種 別	撮影対象	撮影方法及び注意事項
共	通	基礎砕石	施工面	○床掘り終了後砕石填充前に，基礎仕上がり面 と関連のついた写真を写す。
			出来形寸法	砕石締固後の段階で仕上面及び幅厚さ等寸法 が判るよう写す。
		基礎杭 （矢 板）	建込み杭 寸法	○建込み前に杭に，予め目盛りをつけ，同時に杭打やぐらにも目盛りをつけ設計寸法どおり の杭を建込んだ時点で写す。また，水中建込 みの場合は，水深と関連づけて撮影する。

工 種	種 別	撮影対象	撮影方法及び注意事項
共 通	コンクリート 基 礎	施 工 面 出来形寸法	○施工面仕上げ後型わく組立て前に写すものと するが，砕石基礎仕上げ後撮影しているもの は写す必要はない。 ○型枠取外し後，上部工事又は埋戻し前に幅，高さ，厚さが判るように撮影を行う。 ○型枠組立完了時に撮影を行う。 ○鉄筋コンクリートの場合は，鉄筋の位置，間隔が判るように撮影を行う。
コンクリート 側 溝	基 礎 コンクリート	基礎砕石出来形寸法	共通に同じ。 型枠外し後埋戻し前に埋設部分の寸法（高さ幅）が判るように撮影する。

工 種	種 別	撮影対象	撮影方法及び注意事項
コンクリート 側 溝			（鉄筋コンクリートの場合は配筋後の撮影を行 う） ○歩車道境界，官民境界，側溝等ブロック使用 のものは基礎仕上げブロック据付後，中埋コ ンクリート打設前に写す。
管 渠	基 礎 工布設巻立 吞 吐 口	据 付寸法 出来形寸法 ＂	共通に同じ。 管据付後埋戻し前に，管の据付接合等につい て撮影する。 コンクリート巻立の場合は配筋完了後鉄筋の位置，間隔等が判るよう撮影する。 型枠取外し後埋設前に外形寸法が判るよう撮影する。 同上

工	種	種 別	撮影対象	撮影方法及び注意事項
	渠			吞吐口については配筋状態も写す。
函	渠	躯 体	出来形寸法 その他	○底板，側壁，頂版別に鉄筋組立終了後，位置間隔寸法等が判るよう撮影する。 型枠取外し後埋戻し前に，幅，高さ等外形寸法が判るよう撮影する。 管渠工に同じ。 吞吐口の撮影は管渠工に準ずる。

工 種	種 別	撮影対象	撮影方法及び注意事項
函 渠			
地下排水溝	有 孔 管 地下排水 管及びコ ンクリー 卜製透水管	施 工 面 据付寸法 施 工 面出来形寸法	○掘削終了後地下排水工の深さ断面寸法が判る よう撮影する。 （床掘終了後） 基礎工完成後据付位置が判るよう写す。 フィルター材料施工後フィルター厚さが判る よう写す。 有孔管に同じ。 基礎工，地下排水管の芯，フィルター材料の布設の段階ごとに断面寸法，施工状況が判る ように撮影する。

工 種	種 別	撮影対象	撮影方法及び注意事項
$\left\lvert\, \begin{aligned} & \text { コンクリート } \\ & \text { ブロック } \\ & \text { 積 工 } \end{aligned}\right.$	$\left\lvert\, \begin{array}{ll} \text { 基 礎 工 } \\ \text { ブロック } \\ \text { 精 工 } \end{array}\right.$	厚 さ	○共通に同じ。 ブロック積施工前，丁張設置後及び施工中根石部分及び中段部分で厚さが判るよう撮影す る。 ただし高さ 1 m 未満の場合は根石部分のみで よい。 ○練ブロック積で裏型枠設置の際は，裏型枠設置時に撮影する。 （注）ブロック積工の背面は施工後完全に明視出来ないものであり，後日の出来形確認の ためには写真撮影が最も合理的でありこのた めにも撮影基準にとらわれずできるだけ密に撮影するようにする。

工 種	種 別	撮影対象	撮影方法及び注意事項
$\left\lvert\, \begin{aligned} & \text { コンクリート } \\ & \text { ブロック } \\ & \text { 積 工 } \end{aligned}\right.$	排 水 管	法長又は高さ 布設寸法	○ブロック積終了後，埋戻しされる部分は法長又は高さがわかるよう撮影する。 （注）埋戻しされる部分には基礎工仕上げ面 よりスタッフを入れ 1 m ごとにブロック積前面にマーキングをして寸法明示し撮影すると よい。 ○据付け寸法，勾配等が判るよう撮影する。
石 積 工			○コンクリートブロック積に同じ。
$\begin{gathered} \text { コンクリート } \\ \text { ブロック } \\ \text { (石) } \end{gathered}$ 張 工			○共通，コンクリートブロック積工を漼用する。
コンクリート 擁 壁 工	基礎工擁 壁 工	$\left\lvert\, \begin{array}{ll} \text { 鉄 筋 組 } & \text { 立 } \\ \text { 寸 } & \text { 法 } \\ \text { 出来形寸法 } \end{array}\right.$	○共通に同じ。 鉄筋筋立て寸法がわかるよう撮影する。 型枠取外し後埋戻しされる部分の出来形寸法 が判るよう撮影を行う。

工 種	種 別	撮影対象	撮影方法及び注意事項
$\begin{gathered} \text { プレストレスト } \\ \text { コンクリート } \\ \text { 工 } \end{gathered}$	桁 製 作 横 締 め 横 桁 地 覆	P C 鋼 材配 置 P C 鋼 材配 置 配	○各桁（プレキャスト製品を除く）ごとにPC鋼材の配置後，コンクリート打設前に配置の状況が判るように写す。 ○PC鋼材の配置後，隠れるものはコンクリート打設前に配置の状況が判るように写す。 ○鉄筋組立後，寸法，間隔が判るように撮影す る。 同上
橋 梁	基 礎井筒基礎	杭 基 礎栗石基礎沓の寸法 井筒の鉄筋井筒の出来形 寸 法	共通に同じ。 現場搬入後 1 箇所ごとに，径，高さ，厚さ等 が判るように撮影する。 各ロットごとに鉄筋の径，間隔等が判るよう に写す。 各ロットごとに型枠取り外し後，径，厚さ，高さ等が判るように写す。

工	種	種 別	撮影対象	撮影方法及び注意事項
橋	梁	床 版	配 筋	鉄筋組立後，位置，間隔，寸法等が判るよう に写す。
		地 覆鋼橋塗装	$\begin{array}{cc}\text { 配 } & \text { 筋 } \\ \text { 塗 } & \text { 装 }\end{array}$	○内はできるだけ拡大撮影する。 同上 鋼橋塗装のケレン，下塗り，中塗り，上塗り の段階ごとにカラー撮影し，その状況が判る ように撮影する。 塗装厚の測定状況が判るように撮影する。
土	工	伐開除根 段 切 衣 土 置 換 工	施 工 面施 工 面厚 さ出来形寸法	○伐開除根前と施工後と対比できるよう撮影す る。 盛土地盤の段切完了後，段切寸法，施工状況 が判るよう撮影を行う。 丁張設置時又は法揃え時は厚さが判るよう写 す。 置換工の掘削完了後，深さ，幅等が判るよう撮影を行う。

工 種	種 別	撮影対象	撮影方法及び注意事項
土 工			
路盤工	仕上厚	出来形寸法	○路盤工及び基礎工仕上げ後，厚さが判るよう撮影を行う。安定処理工法等の場合コアーを採取し，コアーと現場との関連の判る写真を撮る。 骨材粒径が，対比して判るようなものを置く。例えば，タバコの箱

工 種	種 別	撮影対象	撮影方法及び注意事項
アスファルト 舗 装	舗 設 面施 工	処理状況 温度管理 出来形寸法 舗 設 状 況	○舗設面処理前の路盤状況とプライムコート， タックコート等舗設面の処理状況とが対比で きるように写す。 合材敷均し後，転圧に先だち，温度測定中の写真を写す。できれば温度計の指針が読める ように写す。 各層毎に出来形寸法が判るように写す。型枠取外し後又は打継目箇所の場合
護 岸	法留基礎 コンクリート 法 留	出来形寸法	共通に同じ。 側枠外し後，明視できなくなる部分の出来形寸法が判るように写す。

工 種	種 別	撮影対象	撮影方法及び注意事項
護 岸			鏡張りコンクリート施工前，裏込基礎施工後，前項と同様に法枠表面までの寸法が判るよう に写す。完成後，埋戻しされる部分について は，埋戻し前に法枠後，法枠表面寸法，及び法長が判るように撮影する。
$\begin{aligned} & \text { コンクリート } \\ & \text { ブロック } \end{aligned}$ 根	床 汚濁防止	施 工 面 据付寸法 出来形数量 取付•組立 状況 運搬•設置状況 撤去状況 設 置 状 況	○床均し後，根固工施工前に水位と水深の関連 のある写真を撮影する。この場合，仮量水標，及び仮マークを必ず写しておくこと。 ○陸上据付けで，据付け後埋設される場合及び完成後明視出来ないものは据付寸法及び箇数 が判るように写す。 ○個々のブロックには，一連番号を付して撮影 する。 カーテンの接続，アンカー等の取付状況が判明できるよう撮影する。 作業状況が判明できるよう使用船舶機械を配慮し撮影する。 同上 正面，側面等全体の設置状況が判明できるよ う撮影する。
その他			前記各工種に示すところを準用するものと し，完成後明視できない部分は，必ず撮影す るものとする。

21．コンクリート中の塩化物総量

規制及びアルカリ骨材反応抑制対策実施要領
目 次

1．コンクリート中の塩化物総量規制及びアルカリ骨材反応抑制対策実施要領
I コンクリート中の塩化物総量規制 21－1
II アルカリ骨材反応抑制対策 21－3
アルカリ骨材反応抑制対策（土木構造物）実施要領 21－5
2．骨材のアルカリシリカ反応性試験（モルタルバー法）国土交通省法 ${ }^{(モ 21-7}$
3．骨材のアルカリシリカ反応性試験（化学法）国土交通省法 21－12

1 コンクリート中の塩化物総量規制
 及びアルカリ骨材反応抑制対策実施要領

この要領は，土木構造物の耐久性を向上するために，工事施工時におけるコンク リート中の塩化物総量規制及びアルカリ骨材反応抑制対策を現場において行う場合 に必要な事項を定めるものである。

I コンクリート中の塩化物総量規制

1 適用範囲

土木構造物に使用されるコンクリート及びグラウト剤を対象とする。
（1）生コンクリート
鉄筋コンクリート構造物を対象とする。
ただし，下記の構造物は対象としない。
$\left.\begin{array}{l}\text {（1）小型構造物（I）•（II）} \\ \text {（消波•根固めブロック }\end{array}\right\}$ 鉄筋コンクリートとして設計されたものは除く。）
（2）コンクリート製品
下記に示す製品とする。
コンクリート製品（1）
鉄筋コンクリート管
遠心力鉄筋コンクリート管
鉄筋コンクリート組立土止
遠心力プレストレストコンクリートポール
鉄筋コンクリートフリューム
鉄筋コンクリートケーブルトラフ
加圧コンクリート矢板
鉄筋コンクリートU形用ふた
鉄筋コンクリートボックスカルバート
PCボックスカルバート
鉄筋コンクリートセグメント
鉄筋コンクリートU形
鉄筋コンクリートL 形
遠心力鉄筋コンクリートくい
ポストテンション方式遠心力プレストレストコンクリートくい
道路用鉄筋コンクリート側溝ふた
鉄筋コンクリートベンチフリューム
鉄筋コンクリート矢板
ロール転圧鉄筋コンクリート管

鉄筋コンクリートL 型擁壁
道路用鉄筋コンクリート側溝
コンクリート製品（2）
スラブ橋用プレストレストコンクリート橋げた
軽荷重スラブ橋用プレストレストコンクリート橋げた
けた橋用プレストレストコンクリート橋げた
プレストレストコンクリート矢板
プレテンション方式遠心力プレストレストコンクリートくい
プレテンション方式遠心力高強度プレストレストコンクリートくい
コアー式プレストレストコンクリート管

$$
\text { ※ [1 • (2)とは } 2 \text { の (1)• (2) による。] }
$$

2 規制値
（1）鉄筋コンクリート部材，ポストテンション方式のプレストレストコンクリ ート部材（シース内のグラウトを除く。）及び用心鉄筋を有する無筋コンクリ ート部材における許容塩化物総量は， $0.60 \mathrm{~kg} / \mathrm{m}^{3}$（ Cl^{-}重量）とする。
（2）プレンテンション方式のプレストレストコンクリート部材，シース内のグ ラウト及びオートクレープ養生を行う製品における許容塩化物総量は 0.30 kg ／ m^{3}（ $\mathrm{Cl} 1^{-}$重量）とする。
（3）アルミナセメントを用いる場合又は電食のおそれのある場合等は，試験結果等から適宜定めるものとし，特に資料が無い場合は $0.30 \mathrm{~kg} / \mathrm{m}^{3}$（ $\mathrm{Cl} 1^{-}$重量） とする。
3 生コンクリートの測定及び判定
（1）コンクリート中の塩化物量の測定及び判定は，原則としてコンクリート打設場所で請負者の責任において実施する。
ただし，工場で実施する場合の測定は製造業者が行い，請負者が立会い判定する。
（2）コンクリート中の塩化物量は，（財）国土開発技術センターの評価を受けた測定器により測定するものとする。
（3）測定方法は，使用する測定器の仕様によるものとする。
（4）測定は，コンクリートの打設が午前と午後にまたがる場合は，一日につき二回以上（午前，午後），コンクリート打設前に行うものとする。

ただし，打設量が少量で，半日で打設が完了するような場合には，1回で もよい。

また，コンクリートの種類（材料及び配合等）や工場が変わる場合につい ては，その都度，一回以上の測定を行うものとする。
（5）測定結果の判定は，測定ごとに行うものとし，それぞれの測定における3回の平均値が，2に示している塩化物総量以下であることをもって合格とす

る。
なお，測定の結果不合格となった場合は，その運搬車のコンクリートの受取りを拒否するとともに次の運搬車から，毎回測定を行い，それぞれの結果 が規制値を下回ることを確認した後，そのコンクリートを用いるものとする。

ただし，この場合塩化物総量が安定して規制値を下回ることが確認できれ ば，その後の測定は通常の頻度で行ってもよいものとする。
4 コンクリート製品の測定及び判定
（1）請負者は，製造業者に工場での管理データや製造時の塩化物の測定結果を提出させるものとする。
（2）測定は，打ち込み前のフレッシュコンクリートについて行う。
（3）測定は，3の（2）•（3）に準じて行う。
（4）頻度は，1回／ロット以上，強度等の管理と同様とする。
（5）製品受け入れの判定は，（1）の資料により行う。

5 監 督

監督員は，適宜測定に立会うものとし，その他については請負者より提出させた測定記録により審査する。

II アルカリ骨材反応抑制対策

1．適用範囲

兵庫県が建設する構造物に使用されるコンクリートおよびコンクリート工場製品に適用する。ただし，仮設構造物のように長期の耐久性を期待しなくともよい ものは除く。

2．抑制対策

構造物に使用するコンクリートは，アルカリ骨材反応を抑制するため，次の 3 つの対策の中のいずれか 1 つについて確認をとらなければならない。なお，土木構造物については（1），（2）を優先する。
（1）コンクリート中のアルカリ総量の抑制
アルカリ量が表示されたポルトランドセメント等を使用し，コンクリート $1 \mathrm{~m}^{3}$ に含まれるアルカリ総量を $\mathrm{Na}_{2} 0$ 換算で 3.0 kg 以下にする。
（2）抑制効果のある混合セメント等の使用
JIS R 5211高炉セメントに適合する高炉セメント［B種またはC種］あるい はJIS R 5213フライアッシュセメントに適合するフライアッシュセメント［B種またはC種］，もしくは混和材をポルトランドセメントに混入した結合材で アルカリ骨材反応抑制効果の確認されたものを使用する。
（3）安全と認められる骨材の使用
骨材のアルカリシリカ反応性試験（化学法またはモルタルバー法）淮）の結果で無害と確認された骨材を使用する。

なお，海水または潮風の影響を受ける地域において，アルカリ骨材反応による損傷が構造物の安全性に重大な影響を及ぼすと考えられる場合（（ 3 ）の対策をと ったものは除く）には，塩分の浸透を防止するための塗装等の措置を講ずること が望ましい。

注）試験方法は，JIS A 1145骨材のアルカリシリカ反応性試験方法（化学法）ま たはJIS A 5308（レディーミクストコンクリート）の付属書 7 「骨材のアル カリシリカ反応性試験方法（化学法）」，JIS A 1146骨材のアルカリシリカ反応性試験方法（モルタルバー法）またはJIS A 5308（レディーミクストコン クリート）の付属書 8 「骨材のアルカリシリカ反応性試験方法（モルタルバ ー法）」による。

アルカリ骨材反応抑制対策（土木構造物）実施要領

アルカリ骨材反応抑制対策について，一般的な材料の組み合わせのコンクリート を用いる際の実施要領を示す。特殊な材料を用いたコンクリートや特殊な配合のコ ンクリートについては別途検討を行う。

1．現場における対処の方法

a．現場でコンクリートを製造して使用する場合
現地における骨材事情，セメントの選択の余地等を考慮し，2．1～2． 3 の らちどの対策を用いるかを決めてからコンクリートを製造する。
b ．レディーミクストコンクリートを購入して使用する場合
レディーミクストコンクリート生産者と協議して 2．1～2．3 のうちどの対策によるものを納入するかを決めそれを指定する。

なお，2．1，2．2を優先する。
c．コンクリート工場製品を使用する場合
プレキャスト製品を使用する場合製造業者に 2 ．1～2．3 のうちどの対策に よっているのかを報告させ適しているものを使用する。

2．検査•確認の方法

2． 1 コンクリート中のアルカリ総量の抑制
試験成績表に示されたセメントの全アルカリ量の最大値のうち直近 6 ヶ月の最大の値（ $\mathrm{Na}_{2} \mathrm{O}$ 換算値 \％）／ $100 \times$ 単位セメント量（配合表に示された値 $\mathrm{kg} / \mathrm{m}^{3}$ ）＋
 リ量 $\mathrm{kg} / \mathrm{m}^{3}$ が $3.0 \mathrm{~kg} / \mathrm{m}^{3}$ 以下であることを計算で確かめるものとする。

防錆剤等使用量の多い混和剤を用いる場合には，上式を用いて計算すればよい。 なお，AE剤，AE減水剤等のように，使用量の少ない混和剤を用いる場合には，簡易的にセメントのアルカリ量だけを考えて，セメントのアルカリ量×単位セメン ト量が $2.5 \mathrm{~kg} / \mathrm{m}^{3}$ 以下であることを確かめればよいものとする。
2． 2 抑制効果のある混合セメント等の使用
高炉セメントB種（スラグ混合比 40% 以上）またはC種，もしくはフライアッシ ュセメントB種（フライアッシュ混合比 15% 以上）またはC種であることを試験成績表で確認する。

また，混和材をポルトランドセメントに混入して対策をする場合には，試験等 によって抑制効果を確認する。
2． 3 安全と認められる骨材の使用
JIS A 1145骨材のアルカリシリカ反応性試験方法（化学法）またはJIS A 5308 （レディーミクストコンクリート）の付属書 7 「骨材のアルカリシリカ反応性試験
（化学法）」による骨材試験は，工事開始前，工事中 1 回／6ヶ月かつ産地がかわ った場合に信頼できる試験機関（注）で行い，試験に用いる骨材の採取には請負者 が立ち会うことを原則とする。また，JIS A 1146骨材のアルカリシリカ反応性試験方法（モルタルバー法）またはJIS A 5308（レディーミクストコンクリート） の付属書8「骨材のアルカリシリカ反応性試験（モルタルバー法）」による骨材試験の結果を用いる場合には，試験成績表により確認するとともに，信頼できる試験機関（注）において，JIS A 1804「コンクリート生産工程管理用試験方法—骨材 のアルカリシリカ反応性試験方法（迅速法）」で骨材が無害であることを確認する ものとする。この場合，試験に用いる骨材の採取には請負者が立ち会うことを原則とする。

なお，2次製品で既に製造されたものについては，請負者が立会い，製品に使用された骨材を採取し，試験を行って確認するものとする。

フェロニッケルスラグ骨材，銅スラグ骨材等の人工骨材および石灰石について は，試験成績表による確認を行えばよい。
（注）公的機関またはこれに準ずる機関（大学，都道府県の試験機関，公益法人で ある民間試験機関，その他信頼に値する民間試験機関，人工骨材については製造工場の試験成績表でよい）

3．外部からのアルカリの影響について

2．1 および 2 ．2 の対策を用いる場合には，コンクリートのアルカリ量をそれ以上に増やさないことが望ましい。

そこで，下記のすべてに該当する構造物に限定して，塩害防止も兼ねて塗装等の塩分浸透を防ぐための措置を行うことが望ましい。
1）既に塩害による被害を受けている地域で，アルカリ骨材反応を生じるおそれの ある骨材を用いる場合
2）2．1，2．2の対策を用いたとしても，外部からのアルカリの影響を受け，被害を生じると考えられる場合
3 ）橋桁等，被害をうけると重大な影響をうける場合

2 骨材のアルカリシリカ反応性試験（モルタルバー法）国土交通省法

1 適用範囲
本方法は，モルタルバーの長さ変化を測定することにより，骨材のアルカリシ リカ反応性を判定する試験法（モルタルバー法）に適用する。
2 試験用器具
2． 1 はかり
骨材のふるい分けに用いるはかりは骨材質量の 0.1% 以上の精度を有するも のとする。モルタルを作る際での材料の計量には秤量 2 kg ，感量 0.1 g のものと する。
2． 2 型枓
JIS R 5201 9．1．2に規定される $40 \times 40 \times 160 \mathrm{~mm}$ の 3 連型枠で，両端に長さ変化測定用のゲージプラグを埋め込めるよう，グージプラグ固定用の穴をあけた ものとする。
2． 3 長さ変化測定器具
長さ変化の測定は，JIS A 1129 （モルタルおよびコンクリートの長さ変化試験方法）に規定するダイヤルグージ方法による。ダイヤルグージは，JIS B 7509 の 0.001 mm 精度のものを使用するものとする。ゲージプラグは試験中にさびを生 じない金属製のものとする。
2． 4 モルタル製作用器具
モルタルの練り混ぜ，成形，締固めに使用する器具は，JIS R 5201 （セメン トの物理試験方法）9．1．1及び9．1．2に規定される練り混せ機，モルタル供試体成形用型および突き棒に規定するものを使用する。
2． 5 ふるい
砂の粒度調整用のふるいは，JIS Z 8801 （標準ふるい）に規定する呼び寸法
4． $75 \mathrm{~mm}, ~ 2.36 \mathrm{~mm}, ~ 1.18 \mathrm{~mm}, ~ 600 \mu \mathrm{~m}, ~ 300 \mu \mathrm{~m}, ~ 150 \mu \mathrm{~m}$ のものを用いる。
2． 6 貯蔵容器
供試体を貯蔵する容器は，気密なフタにより密閉ができ，湿気の損失が無い構造のものとする。
2． 7 製砂機
粗骨材から細骨材を製造する製砂機はジョークラッシャー，ディスク型製砂機，ロール型製砂機等を用いる。
3 温度の湿度
3． 1 成形室および測定室
モルタルの成形室および測定室は， $20 \pm 3^{\circ} \mathrm{C}$ 纪保たなければならない。
3． 2 貯蔵容器
貯蔵容器内の温度は $40 \pm 2^{\circ} \mathrm{C}$ ，相対湿度は 95% 以上保たなければならない。

4 材料

4． 1 骨材の準備および粒度調整
対象とする骨材が粗骨材の場合には，あらかじめ洗浄した後，クラッシャー等で粉砕した細骨材とする。細骨材は，気乾状態（絶乾，表乾状態でもよい） で次表に示す粒度に調整する。

細骨材の粒度分布

ふるい呼び寸法		質量 百分率（\％）
通過	残留	
4.75 mm	2.36 mm	25
2.36 mm	1.18 mm	25
1.18 mm	$600 \mu \mathrm{~m}$	25
$600 \mu \mathrm{~m}$	$300 \mu \mathrm{~m}$	15
$300 \mu \mathrm{~m}$	$150 \mu \mathrm{~m}$	

4． 2 セメント
セメントは，アルカリ量 $0.65 \pm 0.05 \%$ ， $\mathrm{Na}_{2} \mathrm{O}$（\％）： $\mathrm{K}_{2} \mathrm{O}$（\％）＝1： 2 ± 0.5 の範囲にあるアルカリ量の明らかなポルトランドセメントを用いる。
4． 3 水酸化ナトリウム
水酸化ナトリウムは，JIS K 8576に規定する特級試薬を水酸化ナトリウム水溶液として用いる。また，市販されている 1 規定の水酸化ナトリウム水溶液を用いてもよい。
4． 4 水
練り混ぜに用いる水は，上水道以上の清浄のものを用いる。
5 供試体（モルタルバー）の作り方
5． 1 供試体の数
1 回の試験での供試体の数は 3 本を原則とする。また， 1 バッチから 3 本を製作する。
5． 2 モルタルの配合
モルタルの配合は質量比でセメント 1 ，水 0.5 ，砂（表乾）2． 25 とする。
1 回に練り混ぜるセメント，砂，水の量は次を標準とする。
水 $\div \mathrm{NaOH}$ 水溶液 ： 300 ml
セメント ：600 g
砂（表乾）： 1350 g
NaOH 水溶液の量はセメントのアルカリ量が $\mathrm{Na}_{2} \mathrm{Oeq}$ で $1.2 \pm 0.05 \%$ となるよう に計算して定める。
5． 3 材料の計量

重量で計量する材料は，4ケタまで計る。砂が表乾状態でない場合は含水（吸水）率を測定し，水の計量の際に補正を行い，水セメント比が変化しないよう にする。
5． 4 練り混ぜ方法
モルタルの練り混ぜは，原則として次に示す方法による。
JISR5201 9．1．1で規定される練り混ぜ機を使用する。練りはちおよびパド ルを混合位置に固定し規定量のセメント，砂を入れる。次に練り混ぜ機を始動 させパドルを回転させながら30秒間混合する。次に練り混ぜ機を停止し，規定量の水を投入する。引きつづいて練り混ぜ機を30秒間始動させたのち 20 秒間休止する。休止のあいだにさじ練りはちおよびパドルに付着したモルタルをかき落す。更に練りはちの底のモルタルをかき上げるよう 2 ないし 3 回かき混ぜる。休止が終わったら再び始動させ，120秒間練り混ぜる。
5． 5 成 形
モルタルは直ちに型枠に 2 層に詰める。モルタルを型枠の高さの $1 / 2$ まで詰め，突き棒を用いてその先端が 5 mm 入る程度に全面にわたつて 1 層につき約 15回突く。また，特にゲージプラグの周囲は十分にモルタルがいきわたるよう にする。次にモルタルを型枠の上端まで詰め，前と同様に突き棒を用いて突き，最後に残りのモルタルをもつて約 5 mm 盛り上げを行なう。打設後は湿気箱に入 れ乾燥を極力減ずるようにモルタル表面にふれないようにぬれ布等でおおう。余盛部は打設後約 5 時間程度で供試体をいためないように注意して削りとり，上面を平滑にする。

6 初期養生

打設後 24 時間 ± 2 時間までは型朹ごと湿気箱に入れて乾燥を極力減ずるように， モルタル表面にふれないようにぬれ布等でおおう。
7 脱 型
初期養生完了後，脱型を行なう。このとき湿気を失わないように番号および測定時の上下，測定時の方向を示す記号を明記する。打設から脱型までの時間は 24 ± 2 時間となるようにする。
8 基長のとり方
脱型直後，番号を付けた後供試体が極力乾燥しないように直ちに基長を測定す る。
9 貯蔵および測定
供試体は密封した容器に温度 $40 \pm 2{ }^{\circ} \mathrm{C}$ ，湿度 95% 以上で貯蔵する。
湿度 95% 以上確保するための手段として，供試体の表面を吸取紙でおおうのが望ましい。吸取紙には流れない程度の水分が常に保たれていなければならない。吸取紙でおおう場合には容器はビニール袋でもよい。

供試体の表面を吸取紙でおおわない場合には，容器底面に温度調節をした水を

はり，その上に供試体を直接水が接しないように 1 本 1 本立てて配置しなければ ならない。

供試体が所定の材令に達したならば供試体を容器ごと少なくとも16時間，20土 $3{ }^{\circ} \mathrm{C}$ に保ったのち容器を開いてその材令の測定を行う。測定の間は極力，供試体 が乾燥しないようにする。

測定後は直ちに $40^{\circ} \mathrm{C} \pm 2{ }^{\circ} \mathrm{C}, ~ \mathrm{RH} \geqq 95 \%$ にもどす。
最初の 24 ± 2 時間の長さの測定の後に 1 つの容器に入れる全ての供試体は，す べて同時に測定がくるように同じ日につくり，同時に容器に入れる。

供試体は測定後，前の期間とは上下逆の位置にして容器の中に置き直す。
10 測定方法
10． 1 長さ変化の測定
測定はJIS A 1129ダイヤルゲージ法による。
測長わくは，供試体を測定する時と同じ状態に置く。
標準尺の一方のプラグに測長わくの接点を接触させ，ダイヤルゲージの先端 が標準尺の軸に一致して動くようにし，スピンドルを徐々に出して，標準尺の もう一方のプラグに接触させダイヤルゲージの目盛を読む。目盛は $1 / 1000 \mathrm{~mm}$ まで読む。スピンドルを引き，再び上記の操作を繰り返し，数値がおちついた後の目盛の読みから平均値を求め，sXiとする。

供試体について，上記の作業を行いXiを求める。
供試体は常に同じ端を上にし同じ面を手前にする。ゲージと供試体の位置関係が常に同一となるようにする。

測定器，標準尺，供試体は，測定前 3 時間，その試験毎に定めた温度に保つ。
10． 2 外観観察
長さ変化の測定時に供試体のそりやポップアウト等の変状，表面のひびわれ や水ガラスのゲル等の浸出物，よごれ等を観察する。
11 長さ変化率の算出
供試体の最初の長さと，測定の各材令における長さとの差を有効ゲージ長さで除 し0．001 \％まで計算し，この期間における供試体の長さ変化率として記録する。

長さ変化率は次の式で求める。
長さ変化率 $(\%)=\frac{(X i-s X i)-(X i n i-s X i n i)}{L} \times 100$
ここにXi：材令 i における供試体のダイヤルゲージの読み
sXi：材令 i における標準尺ダイヤルゲージの読み
Xini：供試体脱型時のダイヤルゲージの読み
sXini：同時に測定した標準尺のダイヤルゲージの読み
$\mathrm{L}:$ 有効ゲージ長（ゲージプラグ内側端面間の距離）
注）Xi，sXi，Xini，sXini，Lの単位は同一とする。

有効ゲージ長はゲージプラグによって長さが異なるので注意を要する。
12 測定材令
測定の材令は次のとおりとする。
脱型時 2 週
4週 8週
3ヶ月 6 ケ月
13 判定
判定については， 3 本の平均値が， 6 ケ月に 0.100% 以上の膨張を生じた骨材は有害であるとする。なお， 3 ケ月で 0.050% 以上の膨張を生じたものを有害として もよいが，3ケ月で 0.050% 未満のものは 6 ケ月まで試験を続けた後に判定しなけ ればならない。

14 精度

同一バッチから成形した全部の供試体の平均膨張量と，個々の供試体の膨張量 との絶対値の差が 0.010% 以下であれば，精度は満たされていると考えてよい。

但し，平均膨張量が 0.050% を超える場合は，個々の供試体の膨張量が平均膨張量と $\pm 20 \%$ 以上の相対差がなければ精度は満たされていると考えてよい。また個々の供試体の膨張量がすべて 0.100% 以上の膨張を示したものは精度に関係な く有害と判定してよい。なお，精度が上記のいずれにも適合しないときは，最も膨張量の小さい供試体 1 本を除いた，残りの 2 本の供試体の平均膨張量で判定し てもよい。

15 報告

報告は次の項目を記載する。
（1）骨材の産地，種別および粒度などの特記事項
（2）セメントの種類および銘柄
（3）セメントのアルカリ量，酸化カリウム（ $\mathrm{K}_{2} \mathrm{O}$ ），酸化ナトリウム（ $\mathrm{Na}_{2} \mathrm{O}$ ）お よび酸化ナトリウム等量（ $\mathrm{Na}_{2} \mathrm{Oeq}$ ）等の数値
（4）供試体の平均長さ変化の百分率，各測定時材令
（5）試験に混和材料を用いた場合には，その種類，使用量，化学分析結果等
（6）その他試験中および試験後の供試体検査によって発見された重要な事項等 の必要事項

3 骨材のアルカリシリカ反応性試験（化学法）国土交通省法

1 総 則

1． 1 一般
本試験方法は，未使用骨材およびフレッシュコンクリート中の骨材について，化学的な方法により，骨材のアルカリシリカ反応性を比較的迅速に判定する方法である。

1． 2 適用範囲
本規定は，試験溶液中のアルカリ濃度減少量（Rc）および溶解シリカ量（Sc） を測定し，判定式から骨材のアルカリシリカ反応性を判定する試験方法（化学法）に適用する。
1． 3 用語
（1）アルカリシリカ反応（ASR）：骨材中の反応性を有するシリカとコンクリー トに含まれるアルカリが反応することにより生じた生成物が吸水して膨張し， コンクリートにひびわれ等を生じさせる現象
（2）アルカリ濃度減少量（Rc）：骨材との反応によって消費されたアルカリの量
（3）溶解シリカ量（Sc）：骨材とアルカリの反応によって溶出したシリカの量
1． 4 関連規格
本試験方法に記述されていない事項は下記の規格によるものとする。
JIS A 1102 骨材ふるい分析試験方法
JIS A 5004 コンクリート用砕砂
JIS A 5005 コンクリート用砕石
JIS B 7413 浸没線付ガラス製水銀棒状温度計
JIS K 0050 化学分析方法通則
JIS K 0115 吸光光度分析のための通則
JIS K 0121 原子吸光分析のための通則
JIS K 8001 試薬試験方法通則
JIS K 8005 容量分析用標準試薬
JIS R 3503 化学分析用ガラス器具
JIS Z 8401 数値の丸め方
JIS Z 8801 標準ふるい
2 試料採取
2． 1 試料採取
試料は約 40 kg を採取する。レデーミクストコンクリート工場において試料採取を行う場合は，粗骨材，細骨材のそれぞれについて約 40 kg を採取する。
3 使用装置•器具および試薬
3． 1 試料調整用装置および器具
（1）粉砕装置 粗骨材を約 5 mm 以下の粒度に粉砕することができるジョークラ ッシャー
（2）微粉砕装置 5 mm 以下の骨材を $300 \mu \mathrm{~m}$ 以下の粒度に粉砕することができ る円盤型粉砕機又はその他適当な装置。
（3）ふるい JIS Z 8001に規定された $300 \mu \mathrm{~m}$ および $150 \mu \mathrm{~m}$ の網ふるい。
（4）乾燥器 $105^{\circ} \mathrm{C}$ に調整し，長時間連続使用し得る乾燥器。
3． 2 アルカリシリカ反応性試験用装置および器具
（1）化学はかり ひょう量 150 g 程度で感量 10 mg のもの，およびひょう量 80 g 程度で感量 0.1 mg のもの。
（2）反応容器 ステンレス鋼又は適当な耐食性材料で製作された容量 $50 \sim 60 \mathrm{~m} \ell$ の容器。気密にふたをすることができるもので，空試験時にシ リカの溶出がなく，アルカリ濃度減少量が $10 \mathrm{mmol} / \mathrm{l}$ 未満のもの。
（3）恒温水槽 反応容器全体を沈めて静置させた状態で， $80 \pm 1.0^{\circ} \mathrm{C}$ に 24 時間以上保持することができるもの。
（4）水浴
（5）砂浴
（6）光電分光光度計又は光電光度計測定波長410nm付近における透過光量を十分な精度で測定できる装置。
（7）原子吸光光度計 高温バーナーを有し，アセチレン・酸化二窒素ガスによ る測定が出来る装置。
（8）電気炉 最高温度 $1100^{\circ} \mathrm{C}$ を長時間保持することができるもの。
（9）分析用器具類
（ a ）ホールピペット（ 5 ml ，，10ml ，20ml ，25ml）
（b）ブフナー漏斗（内径約 80 mm ）
（c）ビュレット（ $25 \mathrm{~m} \ell$ ）
（d）メスフラスコ（ 100 ml ， 1 l ）
（e）三角フラスコ（ 100 ml ）
（f）ビーカー（ 100 ml ，200ml ）
（g）時計皿
（h）共栓付ポリエチレン製容器（ $30 \sim 50 \mathrm{ml}$ ）
（i）ポリエチレン瓶（ 10 ml ， 1 l ）
（ j ）テフロンシリンダー又はポリエチレンシリンダー（ 10 ml ））
（k）白金皿（ 75 ml 又は 100 ml ）
（ 1 ）白金るつぼ（ $30 \mathrm{~m} \ell$ ）
（m）デシケーター
（ n ）吸引ろ過装置
（o）駒込ピペット

3． 3 水および試薬

3．3． 1 水
蒸留水又は同程度以上の純度を有する水を用いる。

3．3． 2 試薬

試薬は，JIS規格の試薬特級又はそれと同等以上のものを使用する。
（1） 1 N 水酸化ナトリウム標準液 1.000 ± 0.010 規定で，± 0.001 規定まで標定したもの
（2） 0.05 N 塩酸標準液 0.05 規定で，± 0.001 規定まで標定したもの
（3）過塩素酸（60または 70% ）
（4）塩酸（ $1-1$ ）
（5）ふつ化水素酸（約 47% ）
（6）硫酸 $(1+1)$
（7）硫酸（ $1+10$ ）
（8）フェノールフタレイン指示薬（1 \％エタノール溶液）フェノールフタレ イン 1 g をエタノール $(1+1) 100 \mathrm{ml}$ に溶解し，滴瓶に入れて保存する。
（9）モリブデン酸アンモニウム溶液（ $10 \mathrm{~W} / \mathrm{V} \%$ ）モリブデン酸アンモニウ ム［（ $\left.\left.\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right] 10 \mathrm{~g}$ を水に溶かして 100 ml とする。溶液が透明で ない場合はろ紙（ 5 種C）を用いてろ過する。この溶液はポリエチレン瓶 に保存する。白色沈澱が生じたら新たに作り直す。
（10）しゅら酸溶液（ $10 \mathrm{~W} / \mathrm{V} \%$ ）しゅら酸 2 水和物 10 g を水に溶かして 100 ml とする。この溶液はポリエチレン瓶に保存する。
（11）シリカ標準原液（ $10 \mathrm{mmol} \mathrm{SiO}_{2} / \ell$ ）二酸化けい素（純度 99.9% 以上）を磁器るつぼに入れて， $1000^{\circ} \mathrm{C}$ で約 1 時間強熱後，デシケーター中で放冷す る。冷却した二酸化けい素 0.601 g を白金るつぼ（ 30 ml ）にはかり取り，炭酸ナトリウム（無水）を 3.0 g 加えてよく混合する。徐熱してから $1000^{\circ} \mathrm{C}$ の電気炉に入れて二酸化けい素を融解する。冷却後，温水 100 ml を入れた ビーカー（ 200 ml ））に入れ融成物をよく溶かす。白金るつぼはよく洗浄し て二酸化けい素を取り出す。溶液は 1 l のメスフラスコに移し，水を加え て定容とした後ポリエチレン瓶に入れて保存する。この標準液は検量線作成のたびに調整する。

4 試料の調整

4． 1 試料の縮分
採取した骨材をよく混合し，約10kgの代表骨材を採る。
4． 2 粗粉砕
代表骨材を粉砕装置で約 5 mm 以下に粗粉砕する。これをよく混合した後，縮分して約 1 kg の代表試料を採る。
4． 3 代表試料の調整
（1）代表試料から $300 \sim 150 \mu \mathrm{~m}$ の粒群をふるい分ける。 $150 \mu \mathrm{~m}$ 以下の微粉は廃棄する。
（2） $300 \mu \mathrm{~m}$ 以上の粗粒部分は，微粉砕装置で，少量ずつ粉砕する。この時，150 $\mu \mathrm{m}$ 以下の微粉部分の割合をできるだけ少なくなるように十分に注意する。
（3）粉砕した代表試料は， $300 \sim 150 \mu \mathrm{~m}$ 粒群にふるい分け， $150 \mu \mathrm{~m}$ 以下の微粉 は廃棄する。 $300 \mu \mathrm{~m}$ 以上の粗粒部分は，4．3（2），（3）の操作を繰り返し て， $300 \sim 150 \mu \mathrm{~m}$ の粒群を集める。
（4） $300 \mu \mathrm{~m}$ 以上の粗粒部分がなくなったら， $300 \sim 150 \mu \mathrm{~m}$ の粒群を混合し，150 $\mu \mathrm{m}$ ふるいを用いて少量ずつ流水下で水洗する。水洗により微粉を除去した試料は，約 1 l の蒸留水を用いてすすぎ洗いを行う。
（5）水洗試料は，ステンレス鋼製バット等の適当な容器に移し，余分の水を除去した後，105 $\pm 5^{\circ} \mathrm{C}$ に調節した乾燥器で 20 ± 4 時間乾燥する。
（6）冷却後，再び $150 \mu \mathrm{~m} ふ$ ふいにより微粉部分を除去し， $300 \sim 150 \mu \mathrm{~m}$ の粒群 をよく混合して試験用試料とする。
5 アルカリシリカ反応性試験
5．1 アルカリと骨材の反応操作
5．1． 1 要旨
試料に 1 N 水酸化ナトリウム標準液を加え， $80^{\circ} \mathrm{C}$ に調節した恒温水槽で 24時間反応させる。

これを吸引ろ過して試料原液を得る。なお，ろ過操作は反応容器 1 個ずつ順次行った方が誤差は小さくなる。
5．1． 2 操作
（1） 1 試料につき $25.00 \pm 0.05 \mathrm{~g}$ ずつを 3 個はかり取り，それぞれ 3 個の反応容器に入れる。次いで 1 N 水酸化ナトリウム標準液 25 ml をホールピペッ トを用いて加え，直ちにふたをする。なお，空試験用反応容器 1 個も同様 に操作する。
（2）反応容器は実験台上で交互に3回ゆっくり水平に回し，試料に付着した気泡を分離する。
（3）反応容器のふたをよく締め，直ちに $80 \pm 1{ }^{\circ} \mathrm{C}$ の恒温水槽に完全に沈めて 24 時間 ± 15 分間そのまま静置する。
（4）所定時間に達したら，恒温水槽中から反応容器を取り出し，流水で $15 \pm$ 2 分間冷却する。
（5）密閉したままの容器を上下に2回転倒させ，5分間静置した後ふたを開 ける。ブフナー漏斗にろ紙（ 5 種 B 5.5 cm ）を置き先ず上澄液を静かに吸引 ろ過する。次いで容器中の残分はステンレス製スプンなどでブフナー漏斗 に移し入れ，残分を軽く押して平らにし 4 分間吸引を続ける。ろ液は $80 ~$ 50ml の共栓付ポリエチレン製容器に受ける。この時の吸引ろ過時間はすべ

て一定にする。
（6）ろ液の入ったポリエチレン製容器を密栓し，混合した後試料原液とする。 5． 2 アルカリ濃度減少量の定量方法

5．2． 1 要旨
試料原液を分取し，水を加えて希釈試料溶液とする。この一部を分取し， フェノールフタレイン指示薬を用いて0．05N塩酸標準液で滴定する。
5．2． 2 操作
（1）5．1．2（6）の試料原液 5 ml をホールピペットで分取し，直ちに100 ml のメスフラスコに移して水で定容とする。よく混合した後，この希釈溶液20ml をホールピペットで分取し，三角フラスコ（100ml）に移す。
（2）フェノールフタレイン指示薬（ $1 ~ \% ~$ エタノール溶液）2～3滴を加え， 0.05 N 塩酸標準液で少量ずつ滴定して，最後の 1 滴でかすかな紅色が無色 となったときを終点とする。
（3）次に，希釈試料溶液 20 ml を再び分取し，1回目に滴定値を参考値として，慎重に滴定を行い，ここで得た値を正式滴定値とする。
5．2．3計算
アルカリ濃度減少量は，次式により算出する。
$\mathrm{Rc}=\frac{20 \times 0.05 \times \mathrm{F}}{\mathrm{V}_{1}}\left(\mathrm{~V}_{3}-\mathrm{V}_{2}\right) \times 1000$
ここに，Rc＝アルカリ濃度減少量（mmol／l）
$\mathrm{V}_{1}=5.2$ ． 2 （1）で希釈試料溶液からの分取量（ml）
$\mathrm{V}_{2}=$ 希釈試料溶液の滴定に要した 0.05 N 塩酸標準液量（ml）
$\mathrm{V}_{3}=$ 希釈した空試験溶液の滴定に要した 0.05 N 塩酸標準液量（ml）
$\mathrm{F}=0.05 \mathrm{~N}$ 塩酸標準液のファクター
5． 3 溶解シリカ量の定量方法
溶解シリカの定量は，次の 3 方法がある。
（1）重量法
（2）原子吸光光度法
（3）吸光光度法
5．3．1 重量法
5．3．1．1 要 旨
試料原液を分取し，塩酸を加えて蒸発乾固した後，過塩素酸処理を行う。沈澱物は強熱後，ふつ化水素酸処理をする。
5．3．1． 2 操 作
（1）5．1．2（6）の試料原液5 ml をホールピペットで分取し，白金血（75 $\mathrm{m} \ell)$ 又はビーカー（ 100 ml ））に移す。
（2）塩酸（1＋1）5ml を加えて混合し，ドラフト内の水浴上で蒸発乾固

する。
（3）乾固したら過塩素酸（ 60 または 70% ） 8 ml を加え，砂浴上で加熱し，内容物がはね飛ばないように注意して蒸発させ，過塩素酸の濃い白煙が出始めたら，時計皿でふたをし，容器の底を少し砂の中に埋えるように して10分間加熱を続ける。
（4）白金皿又はビーカーを砂浴から降ろして放冷した後，時計皿に付いた内容物を水洗して回収し，塩酸（ $1+1$ ） 5 ml および温水約 20 ml を加 えてガラス棒でかき混ぜ，ゼリー状の塊をよくつぶしてから，ろ紙（5種 B ， 11.0 cm ）でろ過し，温水で 10 回洗浄する。
（5）沈澱を白金るつぼ（30ml）に入れ，ろ紙上に硫酸（ $1+10$ ）2， 3 滴 を滴加してから乾燥し，炎を出さないように徐々に加熱してろ紙を炭化 した後，さらに灰化する。次いで， $1000 \pm 50^{\circ} \mathrm{C}$ に調節した電気炉で 1 時間強熱し，デシケーター中で放冷した後，質量をはかる。
（6）白金るつぼ内を少量の水で湿し，硫酸（ $1+1$ ）2， 3 滴およびふつ化水素酸（約 47% ）10ml 加える。これをドラフト内の砂浴上で静かに加熱する。次いで，徐々に加熱して $1000 \pm 50^{\circ} \mathrm{C}$ で 5 分間強熱し，デシケー ター中で放泠した後質量をはかる。
5．3．1． 3 計 算
溶解シリカ量は次式により算出する。
$\mathrm{Sc}=3330 \times \mathrm{W}$
ここに， $\mathrm{Sc}=$ 溶解二酸化けい素（ $\mathrm{mmol} / \mathrm{l}$ ）
$\mathrm{W}=$ 空試験による補正を行った試料原液 5 ml 中の二酸化けい素の質量（ g ）
5．3．2 原子吸光光度法

5．3．2．1 要 旨

希釈試料溶液をアセチレン・酸化二窒素の高温フレーム中に噴霧させ， 251． 6 nm における吸光度を測定してシリカ量を定量する。
5．3．2．2標準液の作成
（1）3．3．2（11）のシリカ標準原液（ $\mathrm{SiO}_{2} 10 \mathrm{mmol} / \ell$ ）から 0 ， 10 ， 20，30，40ml を正しく分取して 100 ml のメスフラスコに入れ，それ ぞれ水を標線まで加えて振り混ぜ，ポリエチレン製容器に移す。（ SiO_{2} として $0, ~ 1.0, ~ 2.0, ~ 3.0, ~ 4.0 \mathrm{mmol} / \ell)$
（2）市販のシリカ標準液（Si1000ppm）を用いる場合は，シリカ標準液を $0, ~ 1.0, ~ 2.0, ~ 4.0, ~ 6.0, ~ 8.0, ~ 10.0 \mathrm{ml}$ を正しく分取して 100 ml のメ スフラスコに入れそれぞれ水を標線まで加えて振り混ぜ，ポリエチレ ン製容器に移す。（Siとして $0,10, ~ 20, ~ 40, ~ 60, ~ 80, ~ 100 \mathrm{mg} / \ell)$
5．3．2．3検量線の作成
（1）原子吸光光度計のけい素用中空陰極ランプを点灯し，輝度を安定さ

せるための最適条件に設定する。アセチレン，空気を用いてバーナー に点火した後，アセチレン酸化二窒素の高温フレームに切り換える。
（2）最も高濃度のシリカ標準液を噴霧させ，アセチレン・酸化二窒素の流量比，バーナーヘッドの位置等の最適条件を設定する。
（3）続いて各標準液の吸光度を測定し，シリカ濃度との関係線を作成し て検量線とする。
5．3．2． 4 操 作
5．2．2（1）で調製した希釈試料溶液の吸光度を検量線作成と同じ条件で測定する。

試料溶液の吸光度が，最も高濃度のシリカ標準液の吸光度を超えると きは，希釈試料溶液をさらに適宜正確に希釈（希釈率 n ）して測定する。
5．3． 2 ． 5
溶液シリカ量は，シリカ標準原液（ $\mathrm{SiO}_{2} 10 \mathrm{mmol} / \mathrm{l}$ ）を用いた場合は （1）式より市販のシリカ標準液（Si 1000ppm）を用いた場合は（ 2 ）式に より計算する。
Sc $=20 \times \mathrm{n} \times \mathrm{C}$
$\mathrm{Sc}=20 \times \mathrm{n} \times \mathrm{A} \times \frac{1}{28.09}$
ここに， $\mathrm{Sc}=$ 溶解シリカ量 $(\mathrm{mmol} / \mathrm{l})$
n ＝希釈倍率
$\mathrm{C}=$ 検量線から求めたシリカ量（ $\left.\mathrm{SiO}_{2} \mathrm{mmol} / \mathrm{l}\right)$
$\mathrm{A}=$ 検量線から求めたシリカ量（Si mg／l ）
5．3．3 吸光光度法
5．3．3．1 要 旨
希釈した試料溶液中のシリカとモリブデン酸アンモニウムとを反応さ せた後，しゅら酸を加える。これを410nm付近で吸光度を測定してシリカ量を定量する。
5．3．3．2検量線の作成
（1）3．3．2（11）のシリカ標準原液（ $\mathrm{SiO}_{2} 10 \mathrm{mmol} / \ell$ ）から 0 ， 1.0 ， 2．0，3．0，4．0ml を正しく分取して 100 ml のメスフラスコに入れ，そ れぞれ約50ml となるように水を加える。（ SiO_{2} として 0 ， $0.1, ~ 0.2$ ， $0.3, ~ 0.4 \mathrm{mmol} / \ell)$
（2）モリブデン酸アンモニウム（ 10% ） 2 ml および塩酸（ $1+1$ ） 1 ml を加えて振り混ぜる。15分間静置した後，しゅら酸溶液（ 10% ） 1.5 ml を正しく加え，水を標線まで加え振り混ぜる。
（3）市販のシリカ標準液（Si 1000ppm）を用いる場合は，シリカ標準液 10 ml を正しくはかり取って 100 ml のメスフラスコに入れ，水を標線

まで加えて振り混ぜる。この溶液から，0，2．0，4．0，6．0，10．0ml を正しく分取して 100 ml のメスフラスコに入れ，それぞれ約 50 ml とな るように水を加える。（Siとして，0，2．0，4．0，6．0，10．0mg／l）
（4）以下，5．3．3．2（2）と同様に操作する。
（5）各標準液は 5 分 ± 10 秒間静置し，水を対照液として， 410 nm 付近の波長で吸光度を測定し，シリカ濃度との関係より検量線を作成する。
5．3．3．3操 作
（1）5．2．2（1）で調整した希釈試料溶液10ml をホールピペットで分取して 100 ml のメスフラスコに移す。
（2）約50mlとなるように水を加えた後，5．3．3．2（2）と同様に操作する。
（3）5分間 ± 10 秒間静置した後，検量線作成時と同じ条件で吸光度を測定する。吸光度が $0.1 \sim 0.6$ の範囲を外れた場合には，試料溶液の濃度 を適宜調整した上で改めて測定を行う。
5．3．3．4計算
溶解シリカ量は，シリカ標準原液（ $\left.\mathrm{SiO}_{2} 10 \mathrm{mmol} / \ell\right)$ を用いた場合は （1）式より，市販のシリカ標準液（Si 1000ppm）を用いた場合は（2）式 により計算する。
$\mathrm{Sc}=20 \times \mathrm{n} \times \mathrm{C}$
$\mathrm{Sc}=20 \times \mathrm{n} \times \mathrm{A} \times \frac{1}{28.09} \cdots \cdots(2)$
ここに， $\mathrm{Sc}=$＝溶解シリカ量（ $\mathrm{mmol} / \mathrm{l}$ ）
n ＝希釈倍率
$\mathrm{C}=$ 検量線から求めたシリカ量（ $\left.\mathrm{SiO}_{2} \mathrm{mmol} / \mathrm{l}\right)$
$\mathrm{A}=$ 検量線から求めたシリカ量（Si mg／l ）
6 試験結果のまとめ
6． 1 試験結果の表示
各測定値はmmol／l 単位で表わし，整数に丸める。
6． 2 許容精度
アルカリ温度減少量及び溶解シリカ量のそれぞれ 3 個の測定値は，いずれも その平均値との差が 10% 以内でなければならない。ただし，Rc，Sc共 100 mmol ／ℓ 以下の場合には，平均値との差が 10 mmol ／ℓ 以内であればよい。
試験結果が上記の範囲をこえるときは，再試験を行う。
7 骨材のアルカリシリカ反応性の判定
7． 1 骨材のアルカリシリカ反応性の判定
骨材のアルカリ反応性の判定は， $\mathrm{Sc} \geqq 10 \mathrm{mmol} / \mathrm{l}$ かつRc $<700 \mathrm{mmol} / \mathrm{l}$ のとき $\mathrm{Rc} \leqq \mathrm{Sc}$ を有害とし，それ以外は無害とする。

主任監督員	監督員	現場監督員

工事名
請負者名

愛抆粗吸			\checkmark	\sim	∞	㑑	米突援			
			带 H					唯	N	析

備 考：測定結果に対する処置を講じた事項等を記入する。

測定者氏名			測	測定値	
立会者氏名	（監）	（請）	$\begin{aligned} & \text { 定 } \\ & \text { 番 } \end{aligned}$	(\%)	塩分量 （kg／m ${ }^{3}$ ）
測定年月日		－時刻	号	又は空欄	
工 種			1		
$\begin{aligned} & \hline \text { コンクリートの } \\ & \text { 種 } \\ & \hline \end{aligned}$			2		
$\begin{aligned} & \text { コンクリートの } \\ & \text { 製造会社名 } \\ & \hline \end{aligned}$			3		
混和剤の種類		$\begin{array}{\|l\|} \hline \mathrm{m}^{3} \text { 当り } \\ \hline \text { 使量 } \\ \hline \end{array}$	計		
セメントの種類			平 均 値		
単 位 水 量					
測 定 器 名					
備 考：測定結果に対する処置を講じた事項等を記入する。					

注）塩分濃度を（\％）で測定した場合は，次式で塩分量を求める。
塩分量 $\left(\mathrm{kg} / \mathrm{m}^{3}\right)=$ 単位水量 $\left(\mathrm{kg} / \mathrm{m}^{3}\right) \times$ 測定量 $\div 100$

22．R I 計器を用いた盛土の締固め管理要領（案）

目 次

1 章 総 則 $22-1$
1． 1 適用の範囲 22－1
1． 2 目 的 22－1
2章 R I 計器による測定方法 $22-2$
2． 1 計器の種類 22－2
2． 2 検定方法 22－5
2． 3 R I 計器による測定方法 22－7
3 章 R I 計器による締固め管理 22－9
3．1 締固め管理指標 22－9
3． 2 水分補正 22－10
3．3 礫に対するR I 計器の適用範囲 22－11
3． 4 管理単位の設定及びデータ採取 $22-12$
3． 5 管理基準値 22－13
3． 6 データの採取方法 22－16
3． 7 データの管理 $22-16$
3． 8 是正処置 $22-17$
参 考 資 料 22－21
参 考 文 献 $22-29$

1章 総 則

1． 1 適用の範囲

本管理要領（案）は河川土工及び道路土工における R I 計器を用いた盛土締固 め管理に適用するものとする。

解 説

河川土工及び道路土工における盛土の締固め管理においては，これまで砂置換法 が主として用いられてきたが，高速道路や一部のダムをはじめとしてR I 計器が導入され，各事業体においてR I 計器を用いた締固め管理が標準化されつつある。

また，R I 計器や測定方法の標準化に関しては，従来の学会基準が改訂され，地盤工学会基準（JGS1614－1995）「R I 計器による土の密度試験方法」が制定される など，本格的な導入に向けての環境も整備されてきた。

一方，現在及び将来とも数多くの高規格堤防や大規模な道路盛土の事業が進行ま たは計画されており，一般の河川土工や道路土工も含めて合理的な締固め管理手法 の導入が必要とされている。

そこで本管理要領（案）は，現場密度試験に R I 計器を用いる場合にR I 計器の持つ特長を最大限発揮させるべく，計器の基本的な取扱い方法やデータ採取，管理基準値の規定を行なうものである。

この基準に規定していない事項については，下記の基準・マニュアルを基準とす る。

- 「河川土工マニュアル」…平成 5 年 6 月，（財国土開発技術研究センター
- 「道路土工一施工指針」…昭和61年11月，（社）日本道路協会

1． 2 目的

本管理要領（案）は河川土工及び道路土工において，R I 計器を用いた盛土の締固め管理を行う際の R I 計器の基本的な取扱い方法，データの採取個数，管理基準値を定めることを目的とする。

解 説

本管理要領（案）では，R I 計器に関するこれまでの試験研究の成果を踏まえ， R I 計器の基本的な取扱い方法や土質等による適用限界を示した。

また，本管理要領（案）ではデータの採取個数を規定した。砂置換法を前提とし た管理では計測に時間がかかることから，かなり広い施工面積を 1 点の測定値で代表させており，盛土の面的把握という観点からは十分なものではなかった。一方R I 計器は砂置換法に比べ飛躍的に測定時間が短くなつているため，従来 1 個の測定

値で代表させていた盛土面積で複数回測定することができる。そこで本管理要領 （案）では，盛土の面的管理の必要性と R I 計器の迅速性を考慮してデータの採取個数を規定した。

2 章 R I 計器による測定方法

2． 1 計器の種類

R I 計器は散乱型及び透過型を基準とするものとし，両者の特性に応じて使い分けるものとする。

解 説

RI計器には一般に散乱型と透過型があり（図－ 1 参照），両者の特徴は以下の通 りである。
（1）散乱型RI計器
線源が地表面にあるため，測定前の作業が測定面の平滑整形だけでよく，作業性が良い。地盤と計器底面との空隙の影響を受けやすいので注意が必要 である。
（2）透過型RI計器
線源が長さ 20 cm の線源棒の先端付近にあり測定時には線源棒の挿入作業を伴うので散乱型に対して少し測定作業時間が長くなる。線源が地中にあるた め，盛土面と計器底面との空隙の影響は比較的受けにくい。

表－1 散乱型と透過型の比較例

項 目		散 乱 型	透 過 型
	ガンマ線	コバルト－60	コバルト－60
	中性子線	カリフォルニウム -252	カリフォルニウム－ 252
検 出 器	ガンマ線	SCカウンタ×1	GM管× 5
	中性子線	He -3 カウンタ× 2	He -3 管 $\times 2$
測定方法	密 度	ガンマ線後方散乱方式	ガンマ線透過型
	水 分	熱中性子散乱方式	速中性子透過型
本 体 寸 法		$310 \times 365 \times 215 \mathrm{~mm}$	$310 \times 365 \times 160 \mathrm{~mm}$
本 体 重 量		25 kg	11 kg
測定範囲（深さ）		$160 \sim 200 \mathrm{~mm}$	200 mm
測定時 間	標 準 体	5 分	10分
	現 場	1 分	1 分
測 定 値		湿潤密度，水分密度，乾燥密度，含水比，空隙率，締固め度，飽和度（平均値，最大•最小値，標準偏差）	
電	源	DC 6 V内蔵バッテリ連続 8 時間	DC 6 V内蔵バッテリ連続12時間
長	所	- 孔あけ作業が不要 - 路線などにも適用可能 - 感度が高く計測分解能力が高い	- 軽量で扱い易い - 表面の凹凸に作用され難い －使用実績が多い
短	所	－測定表面の凹凸の影響 を受け易い －礫の適用に注意を要す る －重い	- 孔あけ作業が必要 - 礫に適用できない場合 がある（削孔不能な地盤） －線源棒が露出している

これまでの研究によると散乱型と透過型の測定結果はどちらと もほぼ砂置換法と同様であることが判っており（参考資料参照），基本的には機種による優劣はない。ただし，盛土材が礫質土の場合（礫の混入率が 60% 以上），その使用には充分留意すること。（3． 3 参照）

（1）散 乱 型

（2）透 過 型

図－1 R1計器の概要

2． 2 検定方法

使用する R I 計器は正しく検定がなされたものであって，検定有効期限内のも のでなければならない。

解 説

放射線源が時間とともに減衰していくため，同じものを測定しても結果が異なっ てくる。因みに線源として一般に用いられているコバルト60（ ${ }^{60} \mathrm{Co}$ ）やカリフォル ニウム（ $\left(^{252} \mathrm{Cf}\right)$ の半減期はそれぞれ5．26年，2．65年である。

そのため標準体での値を基準にした計数率を定期的に調べておく必要がある。
この計数率と測定する物体についての計数率（現場計数率）との比を計数率比（R） といい，計数率比と密度や含水量とに指数関数の関係がある。
（図一2）
この関係を正しく検定したR I 計器を使用し なければならない。

計数率比 $(R)=\frac{\text { 現場計数率 }}{\text { 標準体の計数率 }}$
計数比 $(\mathrm{R})=\mathrm{R}_{0} \exp (\mathrm{a} \cdot \mathrm{X})$
ここに，Roとaは定数であり，Xは密度ある いは含水量を表わす。

また，使用するRI計器のメーカーでの製作納入時，および線源交換時毎の検定結果を添付 し，提出するものとする。

校正式の例を図－3（透過型）に示す。

密度あるいは含水量

図－2 計数率比（R）と密度 および含水量の関係

10 種類以上の土質を用いて， 100 点以上の供試体が作成
されて関係が求められた。

図—3 計数率比と湿潤密度および含水量の検定例
（地盤工学会「地盤調査法」から引用）

2． 3 RI計器による測定方法

R I 計器による測定は操作手順にしたがって正しく行わなければならない。

解 説

（1）R I 計器の構成
散乱型RI計器は計器本体だけで測定が可能である が，透過型はR I 計器本体，線源棒，標準体，線源筒，
ハンマー，打ち込み棒，ベ ースプレートが必要である。 RI計器が現時点におい て供給体制が十分であると は言えないため，使用にあ たっては担当監督員と協議 の上，散乱型あるいは透過型R I 計器を選定し使用す るものとする。
（2）測定手順
測定手順は一般に図—5の
ようになる。

図－5 測定の手順の例
（3）測定上の留意点
1）計器の運搬は激しい衝撃や振動を与えないよう十分注意して行う。
2）充電は十分しておく。
3 ）R I 計器の保管場所は過酷な温度条件とならないところでなければなら ない。特に夏の自動車の車内は要注意である。また，室内外の寒暖差が大 きいところでは，結露に注意すること。
$4)$ 標準体での測定時には，標準体は壁や器物から 1.5 m 以上離れたところに おいて行う必要がある。

5）自然放射線の影響を除くためバックグラウンド測定を行う時，線源は少 なくとも 20 m 以上遠ざける必要がある。

6 ）現場での測定地点は出来るだけ平滑にすることが大事である。特に散乱型は測定面と計器底面との間に空隙を生じると測定結果に大きな影響を与 えるため特に注意が必要である。
7 ）測定表面を平滑にするために鉄板や装備のプレート等を使用するが，表面を削り過ぎて測定対象層より深い深度のデータを取ることのないよう注意が必要である。なお，レキ分が多く，削ることにより平坦性を確保する事が困難な場合は，砂などをひき平滑にする。

測定表面の平滑化 \rightarrow 測定値の信頼性向上

$8) ~$ 測定は施工当日を原則としているので，気象変化には十分注意し 3 章に示したデータの採取数を同日に確保することを心掛ける必要がある。
9 ）測定能率を上げ，一つ一つのデータの採取時間を短縮するために，測定 ポイントの地点出し，表面整形，測定，記録と流れ作業化することが望ま しい。
10）平均値管理を基本としているため，一つ一つのデータのバラツキにあま り神経質になり過ぎ，測定や施工を無為に遅らせることのないよう注意す ることも管理者として必要である。

3 章 R I 計器による締固め管理

3． 1 締固め管理指標

締固め度および空気間隙率による管理を行うものとし，盛土材料の $75 \mu \mathrm{~m}$ ふ るい通過率によりその適用区分を下記のとおりとする。

$75 \mu \mathrm{~m}$ ふるい通過率が	$75 \mu \mathrm{~m}$ ふるい通過率が	$75 \mu \mathrm{~m}$ ふるい通過率が
20% 未満の磜質土及び砂質土の場合	20% 以上 50% 未満の砂質土の場合	50% 以上の粘性土の場合
締固め度による管理	締固め度による管理 または 空気間隙率による管理	空気間隙率による管理

解 説

ここでは河川土工マニュアルに準じて， $75 \mu \mathrm{~m}$ ふるい通過率が 20% 未満の砂礫土及び砂質土の場合は締固め度による管理， 50% 以上の粘性土の場合は空気間隙率に よる管理を原則とし，その中間においては自然含水比など，使用土砂の状況から判断してどちらによる管理を採用するか判断するものとする。

なお，河川土工マニュアルおよび道路土工一施工指針には飽和度による管理の規定も記載されているが，飽和度はバラツキが大きいことから，ここでは飽和度によ る管理は省いている。

3． 2 水分補正

現場のR I 計器を使用するためには，予め土質材料ごとに水分補正を行う必要 がある。土質材料ごとの水分補正値を決定するため水分補正値決定試験現場で実施しなければならない。

解 説

（1）水分補正値
R I 計器が測定する水分量は，炉乾燥法（JIS－A1203）で求められる水分量のみでなく，それ以外の結晶水や吸着水なども含めた，土中の全ての水分量に対応するものである。従って，結晶水や吸着水に相当する量を算出して補正する必要がある。

R I 計器では，これらを補正するために，乾燥密度と強熱減量を考慮した校正式が組み込まれている。土質材料ごとの強熱減量試験を一般の現場試験室で実施することは難しいので，現場でR I 計器による測定と含水量試験を同一の場所の同一材料で実施し，水分補正を行うものとする。

R I 計器は測定した計数比率と校正定数から，強熱減量を 1% ごとに変化 させて，そのときの含水比を推定計算した結果を印字する機能を有している計器を用いる必要がある。この計算結果と含水量試験による含水比から，そ の土質材料に対応する強熱減量値を水分補正値と称す。
（2）現場水分補正決定試験の手順例
1）現場の盛土測定箇所でR I 計器の測定準備。
a）標準体測定
b）標準体BG測定
c）現場BG測定
d）測定箇所の整形および均し
e）R I 計器を測定箇所に設置
2 ）「現場密度」の測定を行う。

3 ）測定が終了したら，水分補正値一含水比の対応表を表示，印字する。
4）R I 計器の真下の土を 1 kg 以上採取する。 （深さ 15 cm 程度まで採取し混合攪拌する）
5 ）採取した土の含水量試験を実施する。
6 ）含水量試験の含水比に近い含水比に対応する水分補正値を読みとる。
7）R I 計器に水分補正値を設定する。
$8) ~ 土$ 質材料が変わらない限り水分補正値を変更してはならない。

3．3 礫に対するRI計器の適用範囲

1．盛土材料の礫率は 60% 以上で，かつ細粒分（ $75 \mu \mathrm{~m}$ ふるい通過率）が 10% 未満の場合は原則として散乱型R I 計器による管理は行わないものとする。
2．径 10 cm 以上の磼を含む盛土材料の場合には，散乱型及び透過型 R I 計器によ る管理は行わないものとする。

解 説

（1）礫率に対する適用範囲
散乱型については磂率（ 2 mm 以上の粒径の土が含まれる重量比）が 70% を越えると急激な測定値の精度が低下する室内実験結果（実測値との相違，標準偏差の増加など）がある。また，現場試験においても礫率が $65 \% \sim 70 \%$ を越えると標準偏差が増加する傾向であった。これは礫分が多くなると測定地点の表面整形がしにくくなり平滑度が低くなるためで，特に散乱型の場合は この平滑度が測定結果に大きく影響を受けるためである。

ここでは，施工管理における適用範囲であることから限界を安全側にとり，礫率 60% 未満を散乱型の適用範囲とした。なお，透過型は礫率 60% 以上でも適用可能としているが，線源棒の打ち込みに支障となる場合があり注意を要 する。
（2）礫径に対する適用範囲
大きな礫が含まれる盛土材料の場合にはR I 計器による測定値に大きなバ ラツキがみられ，値が一定しないことが多い。これは礫率のところでも述べ たように表面の平滑度の問題である。すなわち，礫径の大きなものが含まれ る盛土材料では表面の平滑度が保てず，測定結果に影響を及ぼすため礫径に対する適用範囲を設けた。

ここでは一層仕上り厚さが通常 $20 \mathrm{~cm} \sim 30 \mathrm{~cm}$ であることも考慮して，層厚の
1／2～1／3 にあたる 10 cm を R I 計器の適用範囲とした。
ただし，やむを得ずR I 計器による管理を行う場合は，散乱型•透過型と も監督員と協議の上，現地盛土試験より種々の基準値，指標を決定するもの

3． 4 管理単位の設定及びデータ採取

1．盛土を管理する単位（以下「管理単位」）に分割して管理単位毎に管理を行 うものとする。
2．管理単位は築堤，路体，路床とも一日の一層当たりの施工面積を基準とする。管理単位の面積は1， $500 \mathrm{~m}^{2}$ を標準とする。

また，一日の施工面積が $2,000 \mathrm{~m}^{2}$ 以上の場合，その施工面積を 2 管理単位以上に分割するものとする。
3．各管理単位について原則 15 個のデータ採取を行い，平均してその管理単位の代表値とする。

ただし，一日の施工面積が $500 \mathrm{~m}^{2}$ 未満であった場合，データの採取数は最低 5 点を確保するものとする。
4．データ採取はすべて施工当日に行うことを原則とする。
5．一日の施工が複数層に及ぶ場合でも 1 管理単位を複数層にまたがらせること はしないものとする。
6．土取り場の状況や土質状況が変わる場合には，新規の管理単位として取り扱 らものとする。

解 説

（1）管理単位を日施工面積で規定したことについて
従来，管理単位は土工量（体積）を単位として管理していた。しかし，締固めの状態は面的に変化することから盛土の面的な管理を行う必要があり，施工面積によって管理単位を規定した。

また，その日の施工はその日に管理するのが常識であることから，1日の施工面積によって管理単位を規定するのが妥当と考えられる。
（2）管理単位の規定について
平成 4 年度の全国的なアンケート結果によると日施工面積は， $500 \sim 2,000$ m^{2} の間に多く分布しており，特に $1,500 \mathrm{~m}^{2}$ くらいの施工規模が標準的であった。

また，1台の締固め機械による1日の作業量は2， $000 \sim 2,500 \mathrm{~m}^{2}$ が最大であ ることから，管理単位の面積を原則 $1,500 \mathrm{~m}^{2}$ とした。
（3）データの採取個数の規定について
データの採取個数は3．5の解説に示したように，観測された土層のバラ ツキからサンプリングの考え方に基づき算定されたもので，概ね15個となっ た。この考え方によれば，計測個数を増やせば，管理の精度（不合格な部分 が生じない安全度）は高くなるが，あまり測定点を増やすと測定作業時間が

長引いてR I 計器のメリットの一つである迅速性が発揮されなくなることか ら15点とした。
現場での測定に当たってはこの $1,500 \mathrm{~m}^{2}$ で 15 点を原則として考えるが，単位面積に対しての弾力性を持たせ，1日の施工面積500～2， $000 \mathrm{~m}^{2}$ までは 1,500 m^{2} とほぼ同等とみなし 15 点のデータ採取個数とした。
一方，1日の施工面積が $500 \mathrm{~m}^{2}$ 未満の場合は 15 点のデータ採取とするとあま りにも過剰な管理になると考えられるので最低確保個数を 5 点とした。

また，管理単位が面積で規定し難い場合（土工量は多いが構造物背面の埋立てや柱状の盛土等）は，土工量の管理でも良いものとする。
なお，1管理単位当りの測定点数の目安を下表に示す。

面	積 $\quad\left(\mathrm{m}^{2}\right)$	$0 \sim 500$	$500 \sim 1000$	$1000 \sim 2000$	
測	定	点 数	5	10	15

3． 5 管理基準値

R I 計器による管理は1管理単位当たりの測定値の平均値で行う。なお，管理基準値は 1 管理単位当たりの締固め度の平均値が 90% 以上とする。

解 説

（1）管理基準値について
R I 計器を用いて管理する場合は，多数の測定が可能であるRI計器の特性を生かして，平均値による管理を基本とする。上の基準を満たしていても，基準値を著しく下回っている点が存在した場合は，監督員の判断により再転圧を実施するものとする。

締固め度による規定方式は早くから使用されており，実績も多いが，自然含水比が高く施工含水比が締固め度の規定範囲を超えているような粘性土で は適用し難い問題がある。そのため，3．1に示すように粘性土では空気間隙率，砂質土は締固め度あるいは空気間隙率により管理する。空気間隙率に より管理する場合の管理基準値は河川土工マニュアル，道路土工指針に準ず るものとする。

【参 考】

河川土エマニュアル，道路土工指針の管理基準値（空気間隙率）

基 準 名	河川土工マニュアル	道路土工一施工指針	
区 分	河川堤防	路 体	路 床
空気間隙率 （Va）に よる基準値	－砂質土 $\{\mathrm{SF}\}$ $\begin{gathered} 25 \% \leqq 74 \mu \mathrm{~m}<50 \% \\ \mathrm{Va} \leqq 15 \% \end{gathered}$ －粘性土 $\{\mathrm{F}\}$ $2 \%<\mathrm{Va} \leqq 10 \%$	－砂質土 $\mathrm{Va} \leqq 15 \%$ －粘性土 $\mathrm{Va} \leqq 10 \%$	－
備 考	施工含水比の平均が 90% の締固め度の得ら れる含水比の範囲の内 Woptより湿潤側にある こと。	同 左	施工含水比の平均がWopt付近にあ ること。少なくとも 90% の締固め度の得られる含水比の範囲の内にあるこ と。

〔凡例〕Wopt：最適含水比
（2）測定位置
測定位置の間隔の目安として， $100 \mathrm{~m}^{2}(10 \mathrm{~m} \times 10 \mathrm{~m})$ に 1 点の割合で測定位置を決定する。構造物周辺，盛土の路肩部及び法面の締固めが，盛土本体の転圧と同時に行われる場合，次のような点に留意する。
（1）構造物周辺でタイヤローラなどの転圧機械による転圧が不可能な場合 は別途管理基準を設定する。
（2）特にのり肩より 1.0 m 以内は本管理基準の対象とせず，別途締固め管理基準を設定する。

基準となる最大乾燥密度 $\rho_{\mathrm{d} \text { max }}$ の決定方法

現行では管理基準値算定の分母となる最大乾燥密度は室内締固め試験で求められ ている。締固め試験は，材料の最大粒径などで，A，B，C，D，E法に分類され ており，試験法（A～E法）により管理基準値が異なる場合（路床）もあるため注意を要する。

表－2 室内締固め試験の規定

（地盤工学会編：土質試験法より抜粋）

呼び名	ランマー 重量 (kg)	モールド 内径 (mm)	突固め層数	1層当たりの 突固め回数	許容最大 粒径 (mm)
A	2.5	10	3	25	19
B	2.5	15	3	55	37.5
C	4.5	10	5	25	19
D	4.5	15	5	55	19
E	4.5	15	3	92	37.5

しかしながら，最大乾燥密度は，種々の材料や施工条件により決定しにくく，一定の値として限定できない場合もある。よって，下記のような条件では，試験盛土より最大乾燥密度を決定すべきである。
a）数種類の土が混在する可能性のある材料を用いる場合。
b）最大粒径が大きく，レキ率補正が困難で，室内締固め試験が実施できないよ うなレキ質土材料を用いる場合。
c）施工含水比が最適含水比より著しく高い材料を用いる場合。
d）上記以外の盛土材が種々変化する場合は，試験盛土で基準値を決定する管理 や工法規定により管理する。
＊〈試験施工の実施例〉
（1）規定値は試験施工により，所定の材料，締固め機械，締固め回数より算定 し決定する。
（2）締固め回数を $2, ~ 4, ~ 8, ~ 10, ~ 12$ 回と変化させ締固めを行い，各々の締固 め段階での乾燥密度を 15 点測定し，その平均値を求め，上限乾燥密度を求め る。

③ 上限乾燥密度を最大乾燥密度と定義し，その規格値（ $\mathrm{Dc} \geqq 90 \%$ ）で管理す る。
（4）材料の混合率など，層や場所等で変化する場合はそれぞれ材料で同様の試験施工を行うか，もしくは，その材料に適合した校正式を別途定め，R I 計器に設定する必要がある。
e）締固め度が 100% をたびたび越えるような測定結果が得られる場合，突固め試験の再実施や盛土試験を実施した新たな基準を決定する。
f）改良土（セメント系，石灰系）特殊土の管理基準値は試験盛土により決定する。 また，改良土の場合は材令によっても変化するため，試験方法や管理基準値に ついて別途定められた特記仕様書に準ずるものとする。

3． 6 データの採取方法

データの管理単位各部から偏りなく採取するものとする。

解 説

盛土を面的な管理として行う目的から，管理単位各部から偏りなくデータを採取 するものとする。

3． 7 データの管理

下記の様式に従って管理記録をまとめるものとする。
1．工 事 概 要•••••••••••様式 -1
2．材 料 試 験 結 果…………様式 -2
3．施工管理データ集…………様式 -3
また，現場で測定したデータは原則としてプリンター出力結果で監督員に提出 するものとする。

解 説

各様式については以下の要領でまとめる。
様式－1 工 事 概 要…………工事毎
様式 -2 材 料 試 験 結 果…………材料毎
様式 -3 施工管理データ集………測定機器毎に管理単位面積毎（但し，再締固めを行なった場合は締固め毎）

3． 8 是正処置

施工時において盛土の管理基準値を満たさない場合には，適正な是正処理をと るものとする。

解 説

（1）現場での是正処置として，転圧回数を増す，転圧機械の変更，まき出し厚 の削減，盛土材料の変更，及び気象条件の回復を待つなどの処置をとる。
（2）盛土の土質が管理基準の基となる土質と異なっている場合には，当然基準値に当てはまらないので，締固め試験を行なわなければならない。
（3）礫の多い材料や表面整形がうまくできなくて，R I 計器の測定値が著しく バラつく場合などには，砂置換などの他の方法によることも是正処置として あり得るものとする。
（4）是正処置の判断は，その日の全測定データをみて，その日の品質評価を行 い，是正処置が必要な場合翌日以降の施工方法を変更する。全体を見通した判断が要求され，一日単位程度の是正処置を基本とする。 ただし，過度に基準値を下回る試験結果がでた場合，現場での判断により転圧回数を増すなどの応急処置をとるものとする。処置後はR I 計器で再チェ ックを行う。
（5）是正処置の詳細については，監督員と協議するものとする。

盛 土 エ 事 概 要

〈工事の概要〉

〈断 面 図〉

1）盛土工事を行なった 1 日の平均時間
2 ）開始時間から終了時間まで（休憩時間，昼食時間を含まず）

材 料 試 験 結 果

№．

＊）ある程度以上の粒径を取り除いた室内用の試料ではなく，なるべく盛土に近い試料の含水比を得る観点から，室内突固め試験に用いる土ではなく現場から採取した土を使用する。

盛土 施 エ データ
管理単位番号（ ）計測回（ 回目）

工 事 名 称	1．散乱型R I 試験 2．透過型R I 試験			
計測 の 種 類				
計 測 日		層 番 号	全 層の内	層目
計 測 者 名		盛土前日の天候		
盛土時の天候		計測時の天候		
最大乾燥密度		最適含水比（\％）		
管理 基 漼 値				
計標準体（密度）		標準体（水分）		
数 標準体（密度）B．G．		標準体（水分）B．G．		
率 現場（密度）B．G．		現 場（水分）B．G．		
転圧機械	規 格		転圧回数	

測 点 番 号	湿潤密度 $\mathrm{t} / \mathrm{m}^{3}$	乾燥密度 $\mathrm{t} / \mathrm{m}^{3}$		$\begin{array}{ccc} \text { 含 } & \text { 水 } & \text { 比 } \\ \% \end{array}$	締固め度 $\%$	$\left\|\begin{array}{c}\text { 空気間隙率 } \\ \%\end{array}\right\|$	$\begin{array}{ll} \hline \text { 和 } & \text { 度 } \\ \% & \\ \hline \end{array}$
平 均 値							
最 大値							
最 小 値							
個 数							
標準偏差							

砂置換

測点番号	湿 潤密度｜乾燥 密 度含 水 比	Dc	Va	Sr		

参 考 資 料

図 一 覧

図－1 砂置換と散乱型の相関（乾燥密度•全データ）
図－2 砂置換と散乱型の相関（乾燥密度•土質別データ）
図－3 砂置換と散乱型の相関（含水比•全データ）
図－4 砂置換と散乱型の相関（含水比•土質別データ）
図－5 砂置換と透過型の相関（乾燥密度•全データ）
図－6 砂置換と透過型の相関（乾燥密度•土質別データ）
図－7 砂置換と透過型の相関（含水比•全データ）
図－8 砂置換と透過型の相関（含水比•土質別データ）
図－9 散乱型と透過型の相関（乾燥密度•全データ）
図－10 散乱型と透過型の相関（乾燥密度•土質別データ）
図－11 散乱型と透過型の相関（含水比•全データ）
図－12 散乱型と透過型の相関（含水比•土質別データ）
図—13 レキ率と乾燥密度（標準偏差）の関係〔散乱型〕
図－14 レキ率と締固め度（標準偏差）の関係〔散乱型〕

図－1 砂置換と散乱型の相関（乾燥密度•全データ）

図－2 砂置換と散乱型の相関（乾燥密度•土質別データ）

図－3 砂置換と散乱型の相関（含水比•全データ）

図－4 砂置換と散乱型の相関（含水比•土質別データ）

図－5 砂置換と透過型の相関（乾燥密度•全データ）

砂置換 乾燥密度（ $\mathrm{t} / \mathrm{m}^{3}$ ）

図－6 砂置換と透過型の相関（乾燥密度•土質別データ）

図－7 砂置換と透過型の相関（含水比•全データ）

図－8 砂置換と透過型の相関（含水比•土質別データ）

図－9 散乱型と透過型の相関（乾燥密度•全データ）

図－10 散乱型と透過型の相関（乾燥密度•土質別データ）

図－11 散乱型と透過型の相関（含水比•全データ）

図－12 散乱型と透過型の相関（含水比•土質別データ）

図－13 レキ率と乾燥密度（標準偏差）の関係〔散乱型〕

図ー14 レキ率と締固め度（標準偏差）の関係〔散乱型〕

参 考 文 献

1）国土開発技術研究センター：河川土工マニュアル，1993．
2）日本道路協会：道路土工一施工指針，1986．
3 ）島津，吉岡，武田：R I 利用による土の現場密度•含水量の測定，土木研究所資料第434号，1969．
4 ）島津，吉岡，武田：R I 利用による土の現場密度•含水量の測定（第 2報），土木研究所資料第 580 号，1970．
5 ）高速道路技術センター：ラジオアイソトープによる盛土管理手法の研究報告書，1984．
6 ）建設省：エレクトロニクス利用による建設技術高度化システムの開発概要報告書，1988。
7）建設省：第43回建設省技術研究発表会共通部門指定課题論文集，pp． 8 －25，1989．
8 ）建設省土木研究所ほか：土工における合理化施工技術の開発に関する共同研究報告書，1992．
9）地盤工学会：地盤調査法，1995．
10）地盤工学会：土の締固めと管理，1991．

23．火薬類の譲渡，消費許可手続

目 次

火薬類譲受消費許可申請書の手引きについて 23－1
火薬類の譲受，消費許可について 23－2
1．火薬類の譲受 23－2
2．火薬類の消費 23－2
3．火薬類の譲受許可申請 23－2
4．火薬類の消費許可申請 23－3
5．火薬類の譲受消費許可申請 23－3
6．兵庫県における火薬類譲受消費許可申請について 23－3（県民局長に火薬類の譲受消費許可等の権限委任表）
7．申請書許可経路 23－5
火薬類譲受，消費許可申請書等 消費場所別数量別 提出先あて先提出部数一覧表 23－6
火薬類譲受消費許可申請書等，添付書類一覧表（火薬，爆薬，火工品） 23－7
火薬類譲受消費許可申請書等，添付書類の記載例 23－8
火薬類譲受•消費許可申請書（別表第24） 23－9
火薬類譲受許可申請書（別表第7） 23－11
火薬類消費許可申請書（別表第12） 23－13
火薬類譲受消費許可申請理由書（消費場所追加の場合） 23－15
委任状 23－17
火薬類消費計画書その1（消費の方法） 23－19
危険予防の方法 23－21
火薬類消費承諾書 23－23
火薬類消費計画書その 2 （火薬類取扱者名簿） 23－25
保安手帳•従事者手帳 23－27
出向通知書 23－29
位置図（消費場所案内図） 23－31
消費現場図 23－33
工事証明願 23－37
残火薬類保管引受書 23－39
火薬類保安責任者等選（解）任届 23－41
履歴書 23－43
火薬類取扱保安責任者免状の写し $23-45$
保安手帳の写し 23－47
火薬類取扱所設置届 23－49
火薬類取扱所付近見取図 23－51
火薬類取扱所構造図 23－53
火工所設置届 23－57
火工所付近見取図 23－59
火工所構造図 23－61
火薬類譲受許可証継続許可申請書 23－65
火薬類譲受（渡）許可証再交付申請書 23－67
始末書（譲受•消費許可証紛失等の場合） 23－69
火薬類消費許可証再交付申請書 23－71
火薬類譲受許可証の譲受先変更願い 23－73
火薬類消費計画書記載事項変更届 $23-75$
代表者等変更届 23－77
火薬類取扱所（火工所）設置場所等変更について 23－79
火薬類消費帳簿 23－81
火薬類消費報告書 23－84
火薬類消費終了報告書 23－87
火薬類譲受許可申請書（別表第6） 23－89
甲種•乙種•丙種 火薬類取扱（製造）保安責任者免状交付申請書（別表第15） 23－91
甲種•乙種•丙種 火薬類取扱（製造）保安責任者免状再交付申請書（別表第18） 23－93
始末書（保安責任者免状紛失等の場合） 23－95
火薬類取扱（製造）保安責任者免状記載事項変更及び書換申請書 23－97
事故報告 23－99
保安管理の組織 23－101

火薬類譲受消費許可申請書の手引きについて

火薬類を譲り受ける場合は火薬類取締法第17条第1項の規定により都道府県知事の許可を受けなければならず，又，火薬類の消費に際しても同法第25条の規定により都道府県知事の許可を受けなければならないことになっています。

この火薬類譲受•消費許可申請書を提出するに際し，書類の作成，手続きまで多 くの準備日数及び正確さが要求されております。さらに近年火薬類に関する保安対策については，極めて厳しい社会的要請があり火薬類の保管管理の強化に加え，消費場所をとりまく環境も難しくなるに伴い全国的にも申請の審査基準が相当厳しい ものになってきております。
また，全国火薬類保安協会では環境に優しい発破という方針を平成 6 年より打ち出しております。これに伴い従前より問題でありました発破による振動対策につい て振動計算•発破騒音等に関する計算式が当時の通商産業省環境立地局のご指導の下，全国火薬類保安協会よりオーソライズされました。

この手引書は，火薬類のすべての消費事業所の便宜を図るため編集したものです が，ここに記された記入方法はあくまで一般的な方法及び留意事項であり絶対的な ものではないので，現場の実態に応じて，当局から適宜，指導することもあり得ま すので，その旨，念の為申し添えます。

火薬類の譲渡，消費許可について

1 火薬類の譲受

火薬類を譲り受けようとする者は，次に掲げる場合を除いて都道府県知事の許可を受けなければならない。
（法第17条一規則第37条）
（1）製造業者が火薬類を製造する目的で譲り受けるとき。
（2）販売業者が火薬類を販売する目的で譲り受けるとき。
（3）狩猟免許を受けた者又は鳥獣捕獲の許可を受けた者であって装薬銃を使用 するものが鳥獣を捕獲する目的で規則に定める数量以下の火薬類を譲り受け るとき。
（4）鉱業法により鉱物の試掘又は採掘をする者が鉱物を採取する目的で，規則 で定める数量以下の火薬類を譲り受けるとき。
（5）輸入の許可を受けて火薬類を譲り受けるとき。
（6）法令に基づきその事務又は事業のために火薬類を消費する者が，その目的 で火薬類を譲り受けるとき。
火薬類は一般に販売業者から譲り受けるが，同業者等から無償で譲り受ける場合も許可を受けた後でなければこれを行ってはならない。

2 火薬類の消費

火薬類を爆発させ，又は燃焼させようとする者（火薬類を廃棄するため爆発さ せ，又は燃焼させようとする者を除く。）は次に掲げる場合を除いて都道府県知事 の許可を受けなければならない。
（法第 25 条一規則第49条）
（1）理化学上の実験，鳥獣の捕獲若しくは，駆除，射的練習，信号，観賞その他規則で定めるものの用に供するため，規則で定める数量以下の火薬類を消費する場合
（2）法令に基づきその事務又は事業のために火薬類を消費する場合
（3）非常災害に際し緊急の措置をとるため必要な火薬類を消費する場合火薬類の消費（燃焼•爆発）はその効力を有効に利用すると否とは問わない。土石採取，土木工事用の消費はもちろん，地震探査その他の場合においても許可を要する。

3 火薬類の譲受許可申請

火薬類の譲受許可申請は申請書を，許可を受けようとする者の住所地を管轄す る都道府県知事に提出する。

ただし，火薬類の消費地が特定している場合は譲り受けた火薬類を消費する場所を管轄する都道府県知事に提出する。又，消費地が 2 以上あるときはその主た る消費地を管轄する都道府県知事に申請書を提出する。

一般に火薬，爆発を譲り受けようとする者は上記のただし書きの適用を受ける。
（規則第36条）

4 火薬類の消費許可申請

火薬類の消費許可申請は火薬類の消費地を管轄する都道府県知事に申請書を提出する。 （規則第48条）

5 火薬類の譲受消費許可申請

火薬類譲受許可申請と火薬類消費許可申請を提出する都道府県知事が同一の場合は，それぞれ別に提出する必要はなく火薬類取締法施行規則別表第24の様式で申請できる。

一般に火薬類を譲受消費しようとする者はこの様式を用いて譲受•消費許可申請をすればよい。

6 兵庫県における火薬類譲受消費許可申請について

（1）申請書の提出先，あて先，提出部数は別表の通りである。
（2）県民局長に火薬類の譲受消費許可等の権限が委任されている火薬類の種類，数量は次表の通りである。

県民局長に火薬類の譲受消費許可の権限委任表

火薬類の種類	数 量	火薬類の種類	数 量
火 薬	5， 000 kg 以下	実包及び空包	100万個以下
爆 薬	5，000kg以下	銃用雷管付薬きよう	200万個以下
工 業 雷 管	50万個以下	導 火 線	25キロメートル以下
電 気 雷 管	50万個以下	導 爆 線	25キロメートル以下
信 号 雷 管	12万個以下	その他の火工品にあっ ては，その原料となる火薬又は爆薬の薬量	500 kg 以下
銃 用 雷 管	500万個以下		

上記記載の数量を越える火薬類を譲受消費しようとする場合は，消費地を管轄す る県民局を経由して知事の許可を得なければならない。
（3）公安委員会の意見聴取が必要な消費場所
公安委員会の意見聴取が必要な消費場所であるか否かは知事，県民局長が判断するので事前によく相談する必要があり，その基準は次のような場合が該当する。
（1）交通頻繁な道路一国道，県道，（市町道であっても定期バスの通行等 がある場合は該当する）及びこれから 100 m 以内の距離にある消費場所。ただし迂回路又は通行量が極めて少ない場所は該当しない。
（2）公衆の集合する場所一祭礼，煙火大会等をさし，公衆とは 200 人程度以上 としている。この場所及びこの場所から 100 m 以内 にある消費場所。
（3）市 街
地一凡そ 100 軒程度軒をつらねている場所及びこれか ら 100 m 以内にある消費場所。 なお，学校，病院から周囲 200 m 以内に消費場所が ある場合は意見聴取の対象となる。
（4）そ の他一上記以外にあっても知事並びに県民局長が必要と認めた場所は意見聴取の対象となる。
備考 イ 鉄道，軌道の附近で消費する場所は鉄道，軌道の管理者の承諾書が必要であって公安委員会の意見聴取の対象にならない。

ロ 長期の土木工事及び採石事業の場合で当初の許可で公安委員会 の意見聴取を行ったものは，消費場所及び附近の状況の変化がな い場合に限り，最初の申請の日から 2 年間は，公安委員会の意見聴取を原則として行わない。
（4）提出時期等
消費開始予定日の約 2 週間前に提出すること。（公安委員会の意見聴取が必要な場合の意見照会から回答までの期間を除く。）
（5）収入証紙のちょう付
県収入証紙をはるのは，正本一部。
（6）収入証紙の額
火薬類取締法施行令第 3 条の表 5 のロの金額とすること。

7 申請書許可経路

（1）兵庫県知事許可のもの
（1）公安委員会に意見聴取の必要なもの

（2）公安委員会の意見聴取の不要なもの

（2）県民局長許可のもの
（1）公安委員会に意見聴取の必要なもの

（2）公安委員会の意見聴取の不要なもの

火薬類譲受，消費許可申請書等 消費場所別数量別 提出先あて先提出部数一覧表

$\begin{gathered} \text { 消費場所 } \\ \text { (管轄区域) } \\ \hline \end{gathered}$	（提 出 轄 機 先	火薬類譲受消費数量	あて先	$\begin{array}{\|l\|} \hline \text { 公安委員会の } \\ \hline \text { 意見聴取の該当 } \\ \hline \end{array}$	提出部数
神戸市		県民局長権限数量 以内	神戸県民局長	要 ${ }^{\text {要 }}$	2 部 3 部
		県民局長権限数量を超える	兵庫県知事	要 ${ }^{\text {要 }}$	3部
尼崎市•西宮市	尼崎市東難波町5－21－8 （尼崎総合庁舎）阪神南県民センター 県民交流室 産業振興課 Tei 06－6481－7679 〒 660－8588	県民局長権限数量 以内	阪神南県民局長	要 ${ }^{\text {要 }}$	2部
		県民局長権限数量を超える	兵庫県知事	不 要 ${ }^{\text {要 }}$	3部
伊丹市•宝塚市川西市•三田市猪名川町		県民局長権限 数量 以内	阪神北県民局長	不 要 ${ }^{\text {要 }}$	2部
		県民局長権限数量を超える	兵庫県知事	不 要 ${ }^{\text {要 }}$	3部 4 部
明石市•加古川市 高砂市•稲美町 播磨町		県民局長権限数量 以内	東播磨県民局長	不 要 ${ }^{\text {要 }}$	2 部 3 部
		県民局長権限数量を超える	兵庫県知事	不 要 要	3部
西脇市•三木市小野市•加西市加東市•多可町	加東市社字西柿1075－2（社総合宁全）北播磨県民局総務到商工学政課Te $0795-42-9415$T $673-1431$	県民局長権限数量 以内	北播磨県民局長	不 要 ${ }^{\text {要 }}$	2部
		県民局長権限数量を超える	兵庫県知事	不 要 ${ }^{\text {要 }}$	3部 4 部
姫路市•神河町 市川町•福崎町		県民局長権限数量 以内	中播磨県民局長	不 要 ${ }^{\text {要 }}$	2部 3部
		県民局長権限数量を超える	兵庫県知事	不 要 ${ }^{\text {要 }}$	3部
相生市・たつの市 赤穂市•宍栗市 太子町•上郡町佐用町		県民局長権限数量 以内	西播磨県民局長	不 要 ${ }^{\text {要 }}$	2部 3 部
		県民局長権限数量を超える	兵庫県知事	不 要 ${ }^{\text {要 }}$	3部 4 部
豊岡市•養父市朝来市•香美町新温泉町		県民局長権限数量 以内	但馬県民局長	不 要 ${ }^{\text {要 }}$	2部
		県民局長権限数量を超える	兵庫県知事	不 要 ${ }^{\text {要 }}$	$\begin{aligned} & 3 \text { 部 } \\ & \text { 4部 } \end{aligned}$
篠山市•丹波市		$\begin{aligned} & \text { 県民局長権限 } \\ & \text { 数量 以内 } \end{aligned}$	丹波県民局長	不 要 ${ }^{\text {要 }}$	$\begin{aligned} & 2 \text { 部 } \\ & 3 \text { 部 } \end{aligned}$
		県民局長権限 数量を超える	兵庫県知事	不 要 ${ }^{\text {要 }}$	$\begin{aligned} & 3 \text { 部 } \\ & \text { 4部 } \end{aligned}$
洲本市•淡路市南あわじ市	洲本市緊屋2－4－5（洲本総合舎）淡路県民局県民交流室 商工学政課Tel 0799－26－2086T $656-0021$	県民局長権限数量 以内	淡路県民局長	不 要 ${ }^{\text {要 }}$	2部 3 部
		県民局長権限数量を超える	兵庫県知事	不 要 ${ }^{\text {要 }}$	3 部 4 部

火薬類譲受消費許可申請書等，添付書類—覧表（火薬，爆薬，火工品）

○印は必ず添付しなければならない書類
\triangle 印は備考欄の内容に該当する場合に提出しなければならない書類
\times 印は不要

火薬類諼受消費許可申請書等，添付書類の記載例

別表24（施行規則第 90 条の 2 関係）

記 載 例

火薬類譲受•消費許可申請書

\times 整理番号						
\times 審査結果						
\times 受理 日	年	月	日			
×許可番号						
平成 年					月	日

兵 庫 県 知 事 殿
県民局長 殿

1．この用紙の大きさは，日本工業規格A4とする。
2．×印の欄は，記載しないこと。

記 載 方 法	備 考
1 申請者 個人にあっては本人，法人にあっては代表	1 この申請様式を用いる対象 土木，その他の事業，採石業で火薬類を譲

者。又，現場代理人が申請する場合は代表者等の委任状を添付することが必要である。

2 火薬類の種類及び数量

消費計画書その 1 に記載された種類，数量。
3 目的
工事名等出来るだけ明確，詳細に記載する。
4 譲受，消費期間（最大 1 年）
（1）土木工事であれば工事証明期間内であり火薬類の消費必要期間
（2）採石事業の場合採取計画認可期間内。
（3）その他法令にもとづき許可認可届出を行 う工事で期限付であればその期間内。

5 貯蔵又は保管場所

自社所有火薬庫又は庫外貯蔵所がない場合は ＂当日消費量のみ購入し，残火薬類は原則とし て日出中に譲受先火薬庫に預ける＂と記載する こと。この場合，消費場所より預け入れ先火薬庫までの距離及び運搬に要する時間を記入する こと。

6 消費場所
右備考欄を参照
7 危険予防の方法
記載例に準じて記入すること。
但し，消費場所が公安委員会の意見を聴取さ れる場所，又は特別に危険予防の方法を講ずる必要のある場所の場合は，19頁の危険予防方法書を添付すること。
8 火薬類の譲受先
火薬類の譲受先が複数の場合は，その譲受先 を記入のこと。
9 収入証紙のちょう付
収入証紙は申請書が受理されるまでちょう付 しないこと。

受消費する場合一般にこの様式を用いる。

2 火薬類の種類及び数量

採石法第 33 条の規定にもとづいて採取計画許可をとつた採石業者の場合採取計画許可申請書記載の火薬類計画数量は，その目的に応 じ例えば岩石の量，性状等から算出した適正 な数量とすること。

3 目 的
例えば○○道路拡巾工事，$\times \times$ ダム基盤掘削という様に記入すること。

4 貯蔵又は保管場所

自社所有火薬庫又は庫外貯蔵所がない場合 その日の残火薬類を貯蔵する必要があるので預け入れ先火薬店の残火薬類保管引受書を添付すること。（継続して火薬類を特定な火薬店から購入している場合を除く。）

5 消費場所

（1）道路，河川改良，トンネル工事等にあっ ては測点番号等まで記入すること。
（2）採石にあっては採取計画認可を受けた地番を記載し，字限図を合わせて添付するこ と。
（3）造成工事等にあっては開発許可等を受け た地番と一致していること。

『申請手数料』（平成21年4月1日現在）

1．火工品のみについての許可 2 ，400円
2．1以外の許可
（1）申請に係る火薬類（火工品を除く）数量が 25 kg 以下の場合 3 ， 500 円
（2）（1）以外の場合 6，900円

\times 整理番号			
\times 審査結果			
\times 受 理 日	年		
\times 許可番号			

火薬類譲受許可申請書

平成 年 月 日

兵 庫 県 知 事 殿
県民局長 殿

兵庫県収入紙ちょう付欄
消印はしないこと。
（代表者）
氏
名（a）

備考 1．この用紙の大きさは，日本工業規格 A 4 とする。
2．×印の欄は，記載しないこと。

記	載	方	法		備	考
1 申請者					式	

（1）個人にあっては本人，法人にあっては代表者。
（2）（1）以外の者が申請する場合は代表者の委任状を添付すること。
2 火薬類の種類及び数量
必要最小限の火薬類とすること。
3 目 的
（1）できる限り明確詳細に記入すること。
（2）鉱山の場合はただ鉱業用書くだけでなく どのような鉱物を採掘するのかまで記入す ること。

4 期 間
最大 1 年以内とすること。
5 貯蔵又は保管場所
7 頁の別表24による申請書の記載例及びこ れに関する記載方法と備考欄を参照すること。

6 消費場所

鉱山の場合は採掘試験堀登録をした場合で あって施業案の認可を受けた場所とすること。

7 添付書類

鉱山の場合は採掘権，試掘権登録の写しと施業案認可の写しを必ず添付すること。
8 その他
8 頁を参照のこと。
（1）鉱山保安法第 2 条の鉱山の場合
（2）土木その他の事業であって，消費場所を管轄する府県知事が 2 以上あり消費許可申請を提出する知事と相違する場合
（3）継続して譲受消費する場合
前回の譲受許可で消費残の火薬類がある ため，今回新しい譲受許可申請の量と消費許可申請の量が異なる場合
（4）無許可で消費することのできる火薬類の用途及び数量を譲受ける場合
例えば，コンクリート破砕器を同一の消費地において1日に150個以下を消費する場合はこの申請様式にて譲受許可の申請をす ること。

『申請手数料』（平成21年4月1日現在）
1．火工品のみについての許可 2 ，400円
2．1以外の許可
（1）申請に係る火薬類（火工品を除く）数量が 25 kg 以下の場合 3 ， 500 円
（2）（1）以外の場合 6，900円

別表第12（施行規則第48条関係）

火薬類消費許可申請書

\times 整理番号			
\times 審査結果			
\times 受 理 日	年	月	日
\times 許可番号			

平成 年 月 日
兵 庫 県 知 事 殿
県民局長 殿

備考 1．この用紙の大きさは，日本工業規格A 4 とする。
2．×印の欄は，記載しないこと。

火薬類譲受消費許可申請理由書

> 平成 年 月

日

兵 庫 県 知 事 殿
県 民 局 長 殿
\bigcirc ○建設（森 $\triangle \triangle$ 作業所

現場代理人太 郎
© ${ }^{\text {D }}$

さきに平成 年 月 日付計第 $\times \times$ 号で 年 月 日までの火薬類の譲受消費 の許可を受けておりましたが施主○○市土地開発公社から付帯工事の発注が新たにあり，火薬類の消費の必要が生じました。

つきましては，このたびの追加消費場所は現在許可を受けている消費場所に接してお り，今回改めてここに火薬類の譲受消費許可申請書を提出する次第であります。（消費現場図に新旧の場所を色別で表示しています。）

なお，今回新たに許可を頂いた際は，直ちに現在の許可証を返納いたします。

記 載 方 法	備 考
申請理由書（䋛続等の場合） （1）理 由 何故継続して少薬頪の譔受消費許可申請が必要になったかを中心に記載すること。 （2）前回と今回の消費現場の状況工事概要等に変化があれば記載すること。 （3）その他参考事項があれば記載すること。	この申請理由書は土木その他の工事だけでは なく採石，鋶山業者が申請する場合も同様に添付すること。

私は，○○建設森 $\triangle \Delta$ 作業所○○一郎を以って代理人と定め，下記事項を委任します。

記

1 神戸市北区 $\times \times$ 町 ○○地先における火薬類の譲受，消費にかかる申請手続及びこれらの行為及び並びに管理に関する一切の件

2 目 的 神戸市北区 $\times \times$ 町県道 $\times \times \sim \triangle \triangle$ 線 $\bigcirc \bigcirc$ 地先（測点NO．16～測点NO．49）県道拡幅工事のための岩盤破砕

3 期 間 $\triangle \triangle$ 作業所の所長として在職する間

記 載 方 法	備 考
1 委任者 （1）法人にあっては代表権を持っている代表者 （2）支店長等に代表権が代表者から委任されて いる場合は，支店長でも可 （3）個人にあっては本人，法人にあっては，代表者が申請する場合は不要 2 委任内容 （1）必ず火薬類の譲受及び消費にかかる手続及 び行為といったように委任内容を具体的に明記すること。 （2）又，委任目的，期間も具体的に明記し責任 の所在を明らかにすること。	1 委任状の添付 副本については写しの添付でよい。

火薬類消費計画書その 1 （消費の方法）

記 載 方 法	備 考
1 消費期間及び火薬類の種類•数量 （1）工事証明，その他法令にもとづき許可，認可を受けた期間であって1年以内とし申請書記載の譲受消費期間及び消費数量と同一であること。 （2）消費月のらち消費開始の月と暦年の変更 になった 1 月には年数を記載例の如く記入 すること。 2 消費の方法 （1）岩石の種類を記入し，掘削岩量は事前に よく調査，計算をして正確に記載すること。 （2）特別に薬量規制の必要ある場合，別に試験発破の許可を受けて薬量算定すること。 （3） 1 孔の最大薬量は岩石の状態により一様 ではないので同一消費地での最大薬量を火薬，爆薬の種別に記入すること。 （4） 1 回の発破の最大孔数及び最大薬量は（3） と同じ。但し発破に附随して生じる小割発破等の孔数はその最大孔数を別に記入する こと。 （5）1日の最大発破回数は作業の進行計画に応じて記入すること。 （6） 1 日の最大消費量は 1 回の最大薬量と発破回数より算定すること。 （7）発破予定時刻は，最終発破に残火薬が出 た場合，火薬庫に返納に要する時間を考慮 して定めること。 （8）アンホ爆薬装てん機を使用する場合は， その名称型式を記入すること。	1 薬量算定 消費現場の付近に保安物件及び構造物施設等がある場合発破による振動，騒音等に対す る配慮を十分にして算定すること。 算定根拠については別紙に具体的に記載し検討結果を明示するとともに，同一の消費場所で追加（増量）申請することがないように注意すること。 2 発破の予定回数と時刻 付近住民等との事前協議があった消費場所 はその結果，定期バスが走る道路，鉄道が付近にある消費場所ではその通過時間を避けて設定する必要がある。 3 坑道式発破 事前に構造式発破届を提出すること。 発破作業時の交通止について その他消費場所が道路（国道，県道等） の付近であって，消費に際し，一時交通止 する場合は地元警察等の関係機関と十分に打合せを行うこと。

危 険 予 防 の方法

1 保安物件の状況（消費場所より近いそれぞれの物件とその距離を記載のこと。）

2．危険予防の方法（実施する措置方法の事項及び名称に○印，時間，薬量，回数を記入すること。）

（1） 飛石防 止措置	i 直接防護は，発破孔を直接 （1）ブラストマットで覆い，さらに （1）ブラストマットで覆う。 （2）ブラストベルト （2）ブラストベルト （3）ブラストシート （3）ブラストシート （4）古ダタミ （4）古ダタミ （5） （5）
	ii 間接防護として，別紙図面（ ）の位置に別紙仕様書の飛石防止柵，防護設備を設ける。
（2） 発破時 間制限	i発破時間は，交通量の少ない，バス，列車の通過時間，付近影響のない次の時間帯中に行う。 第1回 \qquad時 \qquad分～ \qquad時 \qquad分第2回 \qquad時 \qquad分～ \qquad時 \qquad分第3回 \qquad時 \qquad分～ \qquad時 \qquad分 第4回 \qquad時 \qquad分～ \qquad時 \qquad分 第5回 \qquad時 \qquad分～ \qquad時 \qquad分第6回 \qquad時 \qquad分～ \qquad時 \qquad分 ii 発破の中断時期は，日曜日，祭日，土曜午後，及び
（3） 発 破 薬 量	i1回発破薬量は，kg以下，1孔の薬量は kg以下とし斉発量は，発以下とする。 ii 試験発破を行い発破薬量の制限を定めその限度内で発破を行う。
（4） $\begin{aligned} & \text { 警 戒 } \\ & \text { 合 図 } \end{aligned}$	i 注意標識板を通行者の見易い場所に掲げる。 ii 見張人を要所に配し通行人の安全を図る。 iii 発破場所の連絡は，① トランシーバーにより行い，発破合図は，（1）サイレン にて確実に行う。 （2）拡 声 器 （2）拡 声 器 （3）人 声 （3）トランシーバー （4）手旗（手信号） （4）人 声
その他	火薬類取締法施行規則第51条から第56条の技術上の基準を守って火楽類の取扱消費を行なう。

記	載	方	法
1 危険予防方法書の記載上の注意 （1）意見聴取に該当する場合			

（2）意見聴取に該当しない場合

危険予防の方法書中 1 保安物件の状況欄の該当する物珄（道路を含む）と距離を記載 すること。（道路の交通量と 2 危険予防の方法欄は記載しなくてもよい。）

2 保安物件の状況

消費場所から保安物件までの最短水平距離 で 300 m 以内に該当物件がある場合種類別に最短距離にある物件の名称及び距離を記入す ること。名称及び距離は別紙消費現場図の表示と一致していること。

尚，国道，県道，市道，町道等が 300 m 以内にあればその線名記入しさらに交通量を調査すること。交通量に時間的推移等があれば その内容を別途添付し発破時刻設定の参考と すること。

3 危険予防の方法

（1）飛石防止措置を講ずる方法に○印をつ ける。
（2）発破時間制限は規制された時間を記入 すること。
（3）発破薬量は，試験発破等にて定められ た限度内の薬量を記入すること。
（4）警戒合図については，連絡，発破合図等に使用する物に○印をつけること。
（5）その他，火薬類取締法施行規則第51条 ～56条にて規定された消費の技術上の基準 を守って災害事故の発生を防止すること。

1 保安物件等

（1）距離は消費場所の端からの最短水平距離 を記載のこと。
（2）たとえば消費現場の真上を通過する高圧電線又はトンネル工事現場の上に保安物件等があれば水平距離は 0 m と記載する。こ の場合垂直距離もあわせて記入すること。
（3）保安距離は可能な限り実測すること。消費場所付近に保安物件等があればその所有者，管理人等の承諾書の添付を必要と するが，事前に許可担当窓口と使用する火薬類の種類及び消費計画を協議しておくの が望ましい。
（4）消費場所付近に国道，県道等があれば道路管理者，及び警察と事前に発破時の交通 の安全確保について協議しておくのが望ま しい。

2 飛石防止方法
（1）確実，有効な方法を記載のこと。
（2）飛石防止措置として，更に有効な措置を する場合は余白部分に追加記入すること。
（注 これらの危険予防の方法を変更するときは規則第 48 条第 3 項により，新たな許可の対象 となる。

火薬類消費承諾書

記 載 方 法	備 考
1 火薬類消費承諾書 （1）様式は別に問わないが＂火薬類を消費す ることを承諾する＂という言葉を必ず入れ ること。 （2）＂○○工事を行ならことを承諾する＂と いう言葉だけでは発破作業の承諾というこ とにならないので注意すること。 2 消費目的等 （1）消費目的及び場所については必ず火薬類譲受，消費許可申請書記入のものと一致し ていること。 （2）条件は承諾を得るときに承諾者から出さ れたものの内容を記入すること。	1 承諾書 （1）消費場所の付近に保安物件その他施設並 びに工作物があれば，それを所有占有する者からの承諾書の添付を必要とすることが ある。ここに示した様式はその基本例であ る。 （2）承諾者が多数の場合は，連名でよい。 2 添 付 （1）原本を申請書正本に添付すること。申請書副本には写しでよい。 （2）継続許可申請を行う場合も同様である。但し，承諾期間内の継続許可申請の場合 は承諾書の写しを添付すること。

火薬類消費計画書その 2 （火薬類取扱者名簿）

区 分	氏 名	住 所	年 令	免状免許証種類
火薬類取扱保安責任者	\bigcirc ○ 太 郎	神戸市中央区中山手通7丁目28番33号	$40 才$	（甲）\cdot 乙
代 理 者	$\times \times$ 二郎	神戸市中央区中山手通5丁目10番1号	25	（甲）\cdot 乙
				甲 • 乙
副火薬類取扱保安責任者	$\triangle \triangle$ 正 夫	明石市荷山町1744	31	甲 •（2）
				甲 • 乙
発破指揮者	\bigcirc ○ 太郎	神戸市中央区中山手通7丁目28番33号	40	（甲）乙
火薬類取扱所記帳責任者	$\diamond \diamond$－郎	神戸市北区中山田町小部3の4	30	$\begin{gathered} \text { 甲 } \cdot \text { 漈破技士 } \\ \hline \end{gathered}$
				甲 • 乙発破技士
火 工 所記帳責任者	$\diamond \diamond$－郎	神戸市北区中山田町小部3の4	30	$\begin{array}{\|c\|} \hline \text { 甲 } \cdot \text { 乙 } \\ \text { 丞破技土 } \end{array}$
				甲 •乙発破技士
発 破記録責任者	\bigcirc ○ 太郎	神戸市中央区中山手通7丁目 28 番 33 号	40	（甲）\cdot 乙
				甲 •乙発破技士
取 扱 者	$\square \quad \square \quad$ 信 $二$	加古川市加古川町寺家町天神木 $97-1$	35	$\underset{\substack{\text { 甲 } \\ \text { 蒸破技土 }}}{\text { 俍 }}$
				甲 •乙発破技士
				甲 • 乙発破技士
補助作業員	$\triangle \triangle$ 三 郎	神戸市北区中山田町小部3の4	28	
				甲 • 乙発破技士

注1 免状，免許証種類欄の甲は甲種火薬類保安責任者免状，乙は乙種同免状，発破技士は発破技士免状である。それぞれ該当のものを○で囲むこと。
2 保安手帳，従事者手帳の確認（次頁及び44頁参照のこと。）

記 載 方 法	備 考
1 取扱者名 簿 （1）火薬類を取扱う必要のある者はすべて記載すること。無資格の補助作業員も記載す ること。 （2）火薬類を運搬する者，見張り（単純見張 を除く）をする者の名前も記載すること。 （3）発破指揮者は切羽において発破作業を指揮する者を記入すること。甲，乙免状又は発破技士免許所有者がこれにあたること。 （4）この名簿に載る者は，全員が保安手帳又 は従事者手帳の所持者でなければならない。又発破場所責任者は，発破技士以上の有資格者であること。 2 保安手帳，従事者手帳の確認 （1）取扱者名簿に記載された者全員の手帳の写しを添付すること。 （2）添付する手帳の写しは1頁，2頁及び保安教育講習の受講記録とする。 3 保安手帳，従事者手帳原本の提示	1 発破作業及び火薬類の取扱いに従事できる者 （1）労働安全衛生法第61条第1項，施行令第20条で関係事業者は＂発破におけるせん孔，装てん，結線，点火並びに不発の装薬又は残薬の点検及び処理の業務＂に資格者以外 の者をつかせてはならないと規定している。 （2）発破の業務につくことができる者 （1）発破技士免許を受けた者 （2）火薬類取締法第31条の火薬類取扱保安責任者免状を有する者 ③ 保安技術職員国家試験規則による試験 に合格した者（昭和 25 年通産省令第 72 号） （3）識別措置•名簿記載等 規則第48条第2項に火薬類を取扱う必要 のある者の氏名を名簿に記載することとあ り，規則第 51 条第 15 号でこの記載されてい る者が現場で火薬類を取扱ら必要のある場合他の者と識別できる措置を講ずることと なっている。この識別措置は具体的に次の ように指導されている。

（1）申請の際手帳を提示し，保安教育講習の受講記録等の確認を受けること。
（2）失効の手帳でないことの確認を受けるこ と。

4 取扱者が出向者である場合には，出向通知書を添付すること。

火 のマークをつけたヘルメットをかぶり腕章をつけること。
（4）取扱保安責任者 \rightarrow 規則第 52 条第 3 項第 12 号火工所責任者 \rightarrow 規則第 52 条の 2 第 3 項発破場所責任者 \rightarrow 規則第 53 条第 2 号

2 発破指揮者

労働安全衛生法施行規則第319条，第320
条で事業者は，導火線又は電気発破作業の指揮者をそれぞれ定めなければならないと規定 している

交付年月日	平成	年	月	日
59	（保）			号
再交付年月日				
平成	年	月	日	
更新交付年月日				
平成	年	月	日	
交付期間の長及び印				
兵庫県火薬類保安協会長				
発行者				
社団 全国火薬類保安協会長				

住 所	写	添	
（フリガナ） 氏 名			
明 生年月日大 昭	年	月	日

再教育講習•保安教育講習•特別講習等の受講記録				
受講年月日	講習会等の種類	場 所	協会印	次回受講期限日
		市 町		－ $12 \cdot 31$
		市 町		－ $12 \cdot 31$
		市 町		－ $12 \cdot 31$
		市 町		$\cdot 12 \cdot 31$
		市 町		－ $12 \cdot 31$
		市 町		$\cdot 12 \cdot 31$
		市 町		－ $12 \cdot 31$
		市 町		－ $12 \cdot 31$
		市 町		$\cdot 12 \cdot 31$

59 중
交付年月日
平成 年 月 日
再交付，更新交付年月日
平成 年 月 日
交付期間の長及び印
兵庫県火薬類保安協会長
発行者
法人 全国火薬類保安協会長

写 真 添 付付

> 住 所
（フリガナ）
氏 名

生年月日大 年 月 日
昭

再教育講習•保安教育講習•特別講習等の受講記録

$\left.$| 受講年月日 | 講習会等の種類 | 場 | 所 | 協会印 |
| :---: | ---: | ---: | ---: | ---: | | 次回受講期限日 |
| ---: | \right\rvert\, | 市 |
| :--- |

記載例

出 向 通 知 書

\bigcirc ○建設（株）$\triangle \triangle$ 作業所
現場代理人
殿

下記 3 名に対し，平成 年 月 日から○○建設株式会社 $\Delta \triangle$ 作業所 に出向し貴事業所の指揮監督のもとに火薬類取扱作業に従事することを命じま したのでご確認願います。

$1)$	氏	名
$2)$	氏	名
$3)$	氏	名

平成 年 月 日
$\times \times$ 土木株式会社
代表取締役

火薬類取扱作業従事者受入確認通知書

$\times \times$ 土木株式会社
代表取締役殿

貴社から出向通知のあった下記 3 名を県道 $\times \times \sim \triangle \triangle$ 線工事の本工事事務所火薬類取扱従事者として受入れたことを確認します。

$1)$	氏	名
$2)$	氏	名
$3)$	氏	名

平成 年 月 日

記 載 方 法	備 考
1 作業の種類の明示等 （1）出向通知には出向先事業所の指捙監督の もとに火薬類を取扱う作業に従事すること を明示すること。 （2）受入碓認通知には受入事業所の作業員と して火薬類を取扱う作業に従事することを明示すること。	

位 置 図（消費場所案内図）

（注）神戸電鉄三田線五社駅下車し 行バスを利用し
停留所で下車し キスラシ山方面に向かって徒歩

記 載 方 法	備 考
1 位 置 図 （1）位置図は，消費場所案内図とすること。 （2）位置図は消費現場がどのような位置，場所にあるか，判断できるとともに現場への道筋を明らかにした図面とすること。 （3）消費場所への交通機関を記入すること。	1 位 置 図 （1）位置図の縮尺は別に問わないが，最寄り の駅等との関係がわかりかつ消費地への道筋を表すものとする。 （2）手書きでもよいが出来るだけ市販の地図 とすること。

2 消費現場図その 2 （平面図）

（1）消費現場の位置をまず明確に朱書し付近 にある保安物件，その他工作物施設の名称 を詳細に記し最短水平距離を記入すること。
（2）見張人，発破指揮者等の位置も正確に記 し間接防護等を講じる場合であればその位置等を記入すること。
（3）消費の方法，進め方などを矢印で記入す ること。

3 消費現場図その2（断面図）
（1）保安物件等が消費現場の付近にある場合特に断面図でもってその関係を明確にし，高低差なども記入し危険予防の方法の参考資料とすること。
（2）消費場所を断面図上にも朱書すること。
（3）隧道工事等の場合縦横断面図を添付し， かぶりが何 m あるか記すること。
4 字 限 図，あざかぎり図
（1）採石業者の場合火薬類の消費許可申請書 に添付すること。
（2）採取計画認可を受けた位置のうち，消費現場の部分を朱書すること。
（3）消費現場の所在地の地番等は現場におい て地図等をよく見て照合確認を行うこと。 また，その他の方法で合理的な方法があ れば，それにより確認すること。

1 消費現場図その1（保安物件等状況図）
（1）縮尺は $1 / 3000$ 程度の市販の地図を利用 すること。
（2）消費場所の端からおよそ 300 m 以内の範囲をすべてカバーできる図面とすること。
（3）（1）の地図が入手困難な場合は手書きもや むを得ないが，主凡例を参考にして，保安物件等をもれなく記入し消費場所との距離関係をはっきり明示すること。
（4）消費現場図その 1 に記載された保安物件等との距離が危険予防の方法で記入した距離と一致しているかよく確かめること。

2 消費現場図その 2

（1）土木，その他の事業の場合にあっては $1 / 500$ 程度の工事平面図を消費現場図その 2とし消費場所を朱書すること。
（2）採石の場合は土木事務所に提出した採取計画図面を消費現場図その2とし当該年度 の消費場所を朱書すること。
（3）距離は最短水平距離とすること。
3 字限図
採取計画の認可を受けた地番と消費現場図 に朱書した場所が一致しているかどうか，消費現場図及び字限図との関係をよく確認する こと。

消 費 現 場 図その1

消費現場図その $2 \quad \mathrm{~S}=1: 500$

工 事 証 明 願

平成 年 月 日

殿
（願出者）氏名
（A1）

本証明書は，火薬類譲受及び消費許可申請書の添付書類として兵庫県知事へ提出しますので，下記 の工事について火薬類を消費する必要があることを証明願います。

記
1 工事番号及び工事名
2 工事期間 自平成 年 月 日～平成 年 月 日

3 火薬類を消費する期間 自平成 年 月 日～平成 年 月 日
4 工事場所（火薬類消費場所）
5 制限地区の有無（注（1）を必ず参照のこと）
消費場所が保安林，開墾制限地，砂防指定地，風致地区，都市計画区域，急傾斜地，地す心゙ り防止区域，文化財関係，自然公園地区，河川法，森林法その他の法律等に該当する制限地区 ではありません。

上記のとおり本工事にかかる火薬類消費現場の状況，制限地区等 の有無について確認し，相違ないことを証明する。
平成 年 月 日

所在地
（証明者）
氏 名
（注）（1）消費場所が風致地区，砂防指定地，保安林，公園等の制限地区の場合にあっては，所割行政庁により制限の解除を受けたことを証する書類を併せて添付すること。
（2）申請者が採石業者であって，採石法（昭和25年法律第291号）第34条の8第1項に規定 する場合にあっては同法第32条の3第2項の規定による採石登録通知書の写しと適用除外 である旨の誓約書その他の場合にあっては前記採石登録通知書と同法第 33 条の規定によ る採取計画の認可を受けたことを証する書類の写しを添付すること。

記	載	方	法	備	考
1 工事証明者 （1）証明者				1 工事証明願 （1）火薬類譲受	工事発注者と

（1）証明者
証明者は，工事発注者であること。
（2）願出者
願出者は，火薬類譲受消費許可申請者で あること。

2 消費期間

火薬類譲受，消費許可申請書記載の消費期間 と同一であるかこれを含む場所であること。

但し，工事期間ではない。

3 工事場所

火薬類譲受，消費許可申請書記載の消費場所所と同一であるかこれを含む場所であること。

4 制限地区等の有無
（1）火薬類消費場所が他法令にもとづく制限地区であれば，当該項目を二本線で消すこと。
（2）二本線で消した当該項目については必ず所轄行政庁により制限の解除を受けたことを証 する書類を添付すること。
（3）火薬類譲受，消費許可申請者が採取計画の認可を受けた採石業者本人であれば，本証明願の添付は不要。

但し
（1）採石法第34条の8第1項規定業者
－採石登録通知書の写
（2）（1）以外の業者の場合

- 採石登録通知書の写
- 採石法第 33 条の規定による採取計画認可証 の写しを添付すること。
（1）火薬類譲受消費許可申請者と工事発注者と の間に元請の業者がある場合は，まず工事発注者と元請業者（願出者）でこの工事証明願 を 1 通，元請業者（証明者）と火薬類譲受消費許可申請者（願出者）で 1 通作成し，計2通を添付すること。
（2）採石を目的とする工事で発注者が採取計画認可をとった採石業者の場合，火薬類譲受消費許可申請者はこの工事証明願と工事締約書 の写しを添付すること。

2 制限地区等の有無

（1）開発行為等を行う場合は様々な法令でもつ て規制されている。火薬類を消費しようとす る現場が他法令による制限を受けていないか又手続きを总っていないか事前に調査しよく確認すること。
（2）その工事が規制を受けている場所での行為 であれば解除されたこと及び手続きが完了し たことを示す書類の写しを必ず添付のこと。
（3）消費場所がその他の法令に基づいて規制を受ける地区であっても許可，認可等の手続き が適用除外されていればその理由を記した文書を添付すること。

3 その他
（1）工事施工にあたって市町村長の意見，条件等があればその写しを添付すること。
（2）工事施工にあたって地元住民等との協定等 があればその写しを添付すること。

残 火 薬 類 保 管 引 受 書

次の火薬類消費場所における火薬類消費において生じる残火薬類を当方火薬庫に預り保管することを引き受けます。

なお，残火薬類の運搬は，残火薬類の発生の都度協議いたします。

記
1．期
間 平成
年 月
日から平成
年
月
日まで

2．消 費 場 所

3．火薬庫所在地
4．運搬距離，時間
km
時
分

平成 年 月 日

記 載 方 法	備 考
残火薬類保管引受書 消費期間，消費場所は申請書記載のものと一致しているとともに販売店の火薬庫までの及び その距離と時間を記入すること。	（注） 一日の消費終了後残火薬類は日出中に販売店 に預け入れ，その際預り証をもらっておくこと。

\times 整理番号	第		号	
\times 受 理 日	平成	年	月	日

平成 年 日 日
兵 庫 県 知 事 殿
県民局長 殿
（代表者）
氏名
（19）

火薬類保安責任者等選（解）任届

添付書類 選任届にあっては免状の写し及び履歴書並びに保安手帳の写しを添付し，併せて保安手帳を持参すること。
備考 1．この用紙の大きさは，日本工業規格A4とする。
2．\times 欄は，記載しないこと。
3．対象は製造所，火薬庫，消費場所の所在地，名称を記載すること。

上記のとおり相違ありません。

平成
年 月
日

記 載 方 法	備 考
免状の写し （1）選任された取扱保安責任者の免状の写しを必ず添付すること。 （2）再交付，書換えを受けた免状であれば，そ の記載を証する事項（免状の裏面等）の写しも必ず添付すること。	免状の写しの添付 （火薬類取締法施行細則第31条）

再教育講習•保安教育講習•特別講習等の受講記録				
受講年月日	講習会等の種類	場 所	協会印	次回受講期限日
		市 町		－ $12 \cdot 31$
		市 町		－ $12 \cdot 31$
		市 町		－ $12 \cdot 31$
		市 町		－ $12 \cdot 31$
		市		－ $12 \cdot 31$
		市 町		－ $12 \cdot 31$
		市 町		－ $12 \cdot 31$
		市 町		－ $12 \cdot 31$

\times 整理番号	第	号		
\times 受 理 日	年	月	日	

火 薬 類 取 扱 所 設 置 届

平成
年
月
日

兵 庫 県 知 事 殿
県民局長 殿
（代表者）
氏
名（ap）

備考 1．この用紙の大きさは，日本工業規格A4とする。
2．×印欄は，記載しないこと。

添付種類（1）火薬類取扱所の設備及び構造を記載した図面
（2）火薬類取扱所を中心とした半径 300 メートルに至る範囲の見取図 （火工所の位置を併せて記入のこと。）

記 載 方 法	備 考
1 火薬類取扱所設置届 一日の消費見込量が火薬又は爆薬にあって は25kg以下，工業雷管又は電気雷管 250 個以下，導爆線にあっては 500 m 以下の消費場所 で火薬類取扱所を設けなくてよい場合は原則 として不要。 2 最存置量 （1）消費計画書（その1）記載の一日の最大消費見込量以下とすること。 （2）存置する火薬類の種類を記入すること。 3 設置期間 消費期間と同一とすること。	1 火薬類取扱所の定義 「火薬類取扱所」とは，建物だけでなく，建物 の周囲に設けられた適当な境界柵の内部を含む ものである。 2 設置場所 取扱所は，通路，通路となる坑道，動力線火薬庫，火気を取扱う場所，人の出入する建物等に対 し安全な場所でかつ湿気の少ない場所に設けるこ と。具体的にはこれらの物件と 20 m 以上（火薬庫 については当該火薬庫保安距離以上）離すこと。 （国道，県道又は交通ひんぱんな道路の近くに設置しないこと。）特に火工所との距離も 10 m 以上確保する（取扱所については境界柵からとする） こと。確保できない場合は下図のような措置をす ること。 注 火薬類取扱所は，一つの消費場所について 1 箇所とする。

防爆壁設置図

防爆壁は鉄筋コンクリート造（厚 15 c m 以上）又は補強コンクリートブロック造（厚 19 cm 以上上）基礎
は堅ろうとし，高さは軒までの高さとする。

火薬類取扱所付近見取図

（火薬類取扱所を中心とした半径 300 メートルに至る見取図）

書き込むことが困難な場合別紙図面参照として もよい。

記 載 方 法	備 考
取扱所の位置 （1）取扱所の設置場所には $~(~$ 印で朱書する こと。 （2）火工所の設置場所も明確に示すこと。 （3）取扱所と消費現場及び保安物件並びに他 の工作物，施設との距離を示すこと。 （4）見取図は手書きでもかまわないが， ～（3）の事項について明確，詳細に記入す ること。	

火薬類取扱所構造図（コンクリートブロック造り）

記 載 方 法	備 考
1 構 造 図 （1）平面，側面，正面，断面等を出来るだけ詳細に記載すこと。 （2）書き込むことが困難の場合は別紙図面，仕様明細を添付すること。 （注）同程度に盗難及び火災を防ぎ得る構造 （例えば鉄板張火薬類取扱所）は，次頁に其の例を掲げている。 2 収 納 容 器 （1）収納容器は最大存置量に見あった大きさ とし，ダンボール箱，木箱，木製棚等であ つて，特に電気雷管の収納容器は，電気の不良導体で作った丈夫なものを使用するこ と。 （2）収納容器の存置場所は，爆薬収納容器と，電気雷管収納容器を隔離した場所とするこ と。 3 その他 （1）暖房の設備を設ける場合には，温水，蒸気又は熱気以外のものを使用しないこと。 （2）火薬類取扱所内には，見易いところに取扱いに必要な法規及び心得並びに定員を掲示すること。 （3）火薬類取扱所の周囲には，「火薬」，「立入禁止」，「火気厳禁」等と書いた警戒札を立てること。 （4）火薬類取扱所には，貯水槽，バケツ等の消火用具を常備すること。	構 造 （1）（イ）火薬類取扱所の構造は，火薬類を存置す るときに見張人を常時配置する場合を除き，平屋建の鉄筋コンクリート造り（厚さ 10 cm以上），またはコンクリートブロック造り （厚さ 12 cm 以上），またはこれと同等程度に盗難を防ぎ得る構造とすること。 （ロ）火薬類取扱所の大きさは，1日の消費見込量以下の火薬又は爆薬と火工品が，それぞれ異なった容器等に収容でき，かつ内部におい て取扱者が火薬類の管理及び発破の準備がで きる広さとすること。 （八）火薬類取扱所の床，屋根，天井裏，ひさし，出入口の扉，蝶番，施錠等については54頁の移動式取扱所の備考欄 5～12を参考にするこ と。 （二）柵の高さは 1.8 m 以上とし，人の侵入を防 ぐ構造で有刺鉄線による柵の横線の条間隔 は20cm以下とし，柱間隔が 1 m を超える場合はたすき掛とすること。 （2）昼夜兼行の消費現場の火薬類取扱所には必 ず証明設備を設けること。又警報設備を設け ることが望ましい。

記 載 方 法	備 考
火薬類取扱所構造図（コンクリートブロック造り）の記載方法を参考とすること。 備 考 この基準に適合した移動式火薬類取扱所の既製品が市販されているから，その仕様書等を利用し て設置届を提出することができる。 1 位置，暖房設備，照明，境界さく，警戒札，定員，存置量等については，コンンクリート造 り又は，コンンクリートブロック造りに準ずる。 2 基礎は十分荷重に耐えるものとし，建屋はボ ルト等にて基礎に強固に固定すること。 3 骨組は耐力パネルを組合せるか，軽量型鋼と し，外部にボルト，ナットを組合せるか，軽量型鋼とし，外部にボルト，ナット類を表さない こと。 4 外壁は，厚さ2ミリメートル以上の鉄板張り とし，ボルト，ナット類を表さない。内壁は，厚さ 5.5 ミリメートル以上の板張りとし，鉄類 を表さないこと。 外壁と内壁の空間には断熱材を挿入すること。 5 床は厚さ 12 ミリメートル以上の板張りとし，鉄類を表さないこと。 床の下面は厚さ 2 ミリメートル以上の鉄板を張る。ただし側面の壁が地盤面下まであり，基礎と一体となっている場合は，このように鉄板 は張らなくてよい。 6 屋根の外部は \＃28（厚さ 0.36 ミリメートル） 以上の平鉄板張り又はスレート葺きとし，雨水 の浸入を完全に防止する。	7 天井裏又は屋根裏には 8 番線以上，網目 5 センチメートル以下の金網を張り，かつ金網 は，側面の壁に確実に緊結させること。 8 ひさし等が木製の場合，防火塗料を塗る等防火措置を講ずる。 9 出入口の扉枠は，壁パネルの骨組等に溶接 し固定すること。 10 扉は片開きとし，厚さ 2 ミリメートル以上の鉄板張りアングルドアとし，バール等でこじあ けられないよう 3 周を 15 ミリメートル以上扉枠 に覆いかぶさるようにし，かつ蝶番側の扉側面上下 2 カ所にロッド棒を取付け，扉の内面は木製の板張りとすること。 11 蝶番は角蝶番で，心棒が抜けないものとし，扉と扉枠に溶接する。 12 錠はシリンンダー本締錠で，なるべく異型の ものを 2 カ所に取付け，錠のデットボルトは受座に10ミリメートル以上は入るようにする。

\times 整理番号	第		号
\times 受理 日	年	月	日

火 工 所 設 置 届

平成 年 日 日

兵 庫 県 知 事 殿
県民局長 殿
（代表者）氏 名＠

名 称	
$\begin{array}{\|ccc} \text { 事 務 所 所 在 地 } \\ & \text { (電話) } \end{array}$	TEL－\quad－
代 表 者 住 所氏名	
火工所設 置 場 所	
存置する火薬類の類及び最大存置	爆 薬 kg 電気雷管 個
設 置 期 間	年 月 日 から 年 月 日
備 考	火薬類を存置中は常時見張人をおく。 工事の進捗状況にと伴い設置場所を安全な場所に 移動する 移動しない

備考 1．この用紙の大きさは，日本工業規格A4とする。
2．×印欄は，記載しないこと。
3．存置する火薬類の種類及び最大存置量の項は，火薬類取扱所を設置しない場合に記入し，火薬類取扱所を設置する場合は二本線で消すこと。

記 載 方 法	備 考
1 火工所設置届 この届出の様式は規則第52条の 2 第 1 項にもと づく火工所及び同条第2項にもとづく火工所兼用 のものである。 2 火工所設置場所 詳細に記入すること。 3 設置期間 火薬類消費期間と同一であること。 4 備 考 工事の進捗状況によって移動する，もしくは移動しないは，該当する方に○印をすること。 52 箇所以上設置の場合 （取扱所を設け，発破場所が多く火工所を 2 箇所以上設置した場合） 火工所設置届をそれぞれ作成し構造図も添付 すること。 6 最大存置量 取扱所を設けない場合で火工所において火薬類の管理及び発破の準備を行なら場合は，この欄に記入すること。 （1）存置量は1日の消費見込量以下であること。 （2）この場合において当該火工所は，一つの消費場所について 1 箇所しか認められない。 （3）爆薬，電気雷管以外の火薬類を存置する場合は，その種類，数量を記入すること。	1 火工所の定義 「火薬類取扱所」は境界さくの内部を含むが，「火工所」はその建物又はテントそのものが火工所である。 2 火工所設置場所 火工所は通路，通路となる坑道，動力線，火薬類取扱所，他の火工所，火薬庫，火気を取り扱う場所，人の出入する建物等に対し安全でかつ湿気 の少ない場所に設けなければならない。 3 火工所の構造 火薬類取扱所にくらべ簡易なものになっている のは，切羽の状況による立地条件又は親ダイ作業 のため絶えず取扱者が作業している点が考慮され たものである。しかし盗難防止については十分留意し，採石又は土木工事等の場合で長期間火薬類 を消費する場所の火工所については，なるべく建物を設け，かつ安全に作業ができる構造のものと すること。 4 火工所の見張 火工所に火薬類を存置中は，その構造に関係な く常時見張人を配置すること。

火工所付近見取図

書き込むことが困難な場合別紙図面参照として もよい。

火 工 所 構 造 図

記 載 方 法	備 考
1 構造図 （1）火工所の正面，側面，平面図を詳細に記載 すること。 （2）収納容器もその構造を明確に記載すること。 ィ 最大存置量に見合った大きさとすること。 ロ 収納箱は電気不良導体であって必ず施錠 できる構造とすること。 （3）火工所の周囲の適当な柵も記入すること。 2 その他 （1）暖房設備，照明設備を設ける場合は，その構造についても詳細に記載すること。 （2）火工所には，貯水槽，バケツ等の消火用具 を常備すること。	1 火工所の構造 （1）（1）建物を設ける場合 適当な換気の措置を講じ，床面には鉄類を表さないこと。 （2）その他の場合 日光の直射及び雨露を防ぎ，安全に作業ができるような措置を講ずること。 （左ページの構造図はこれに該当する。） （2）暖房の設備を設ける場合には，温水，蒸気又は熱気以外のものを使用しないこと。 （3）火工所には，見易いところに取扱いに必要 な法規及び心得並びに定員を掲示すること。 （4）火工所の周囲には適当な柵を設け，かつ「火薬」，「立入禁止」，「火気厳禁」等と書 いた警戒札を立てること。

火 工 所 構 造 図（2）

2 鉄板造り

正面図

側面図

木製収納容器構造図の一例

| 記 載 方 詓 | 備 |
| :---: | :---: | :---: |

\times 整理番号		
\times 受理 日	年	月

火薬類譲受許可証継続許可申請書

平成 年 日 日

兵 庫 県 知 事 殿
県民局長 殿

（代表者）
氏
名
（19）

備考
1．この用紙の大きさは，日本工業規格A 4 とする。
2．×印の欄は，記載しないこと。

記 載 方 法	備 考
継続許可申請 （1）規則第38条第1項の譲受許可証の譲渡人記載欄に余白がなくなった時その交付を受けた兵庫県知事又は県民局長にこの様式を用いて継続申請すること。 （2）許 可 証申請の際許可証も同時に提出すること。	規則第 40 条削除

\times 整理番号			
\times 受 理 日	年	月	日

火薬類譲受許可（渡）許可証再交付申請書

平成 年 月 日
兵 庫 県 知 事 殿
県民局長 殿

記 載 方 法	備 考
1 再交付申請 再交付申請を行うことのできるのは， 次の事例に限られる。 （1）許可証を喪失したとき。 （2）許可証を汚損したとき。 （3）許可証を盗取されたとき。 2 再交付申請手続 （1）許可証が喪失，盗取されたため交付年月日，番号等不明の場合は交付先に確かめて申請する こと。 （2）申請の際は次ページの始末書を必ず添付する こと。 （3）譲受消費許可を受け譲受許可証とあわせて消費許可証も事故に会ったときは，69頁の消費許可証再交付申請も併せて行らこと。	1 再交付申請 記載方法の1の（1），（3）に該当するときは遅滞な く，その旨を警察官又は，海上保安官に届け出 なければならない。 （2）の場合は申請時に旧許可証を添付すること。 2 再交付を受けた後 許可証の再交付を受けた後旧許可証を発見した ときは，5日以内に旧許可証を交付先に返納する こと。

このたび私の不始末により，さきに交付を受けました火薬類 譲受（渡）許可紛失し
証（平成 年 月 日付 第 号）を汚損し ましたので再交盗取され

付をお願いします。
なお，今後旧許可証を発見したときは直ちに返送することをあわせて誓約い たします。

記

1 事故発生の日時及び場所
（1）日 時
（2）場 所
2 事故の理由

3 届出警察署名及び届出年月日等（紛失•盗難等の場合）
（1）署 名
（2）年 月 日
（3）届出受理番号

$$
\begin{array}{ll}
\text { (住 } & \text { 所) } \\
\text { (氏 } & \text { 名) }
\end{array}
$$

©

年 月 日
兵 庫 県 知 事 殿
県知局長 殿

記 載 方 法	備 考
始 末 書 （1）この始末書は記載の一例である。 （2）特に許可証を紛失，盗取された場合，その事故の発生状況を詳細に記載すること。 （3）紛失，盗難等の場合事故届を最寄の警察官又 は海上保安官に届出る必要があるので届出た警察署，届出年月日等を記入すること。	

×整理番号			
\times 受 理 日	年	月	日

火薬類消費許可証再交付申請書

平成 年 月 日

兵 庫 県 知 事 殿
県民局長 殿

名										

記 載 方 法	備 考
1 再交付申請 再交付申請を行うことのできるのは，次の事例 に限られる。 （1）許可証を喪失したとき。 （2）許可証を汚損したとき。 （3）許可証を盗取されたとき。 2 再交付申請手続 （1）許可証が喪失，盗取されたため交付年月日，番号等不明の場合は交付元の都道府県を確かめ て申請すること。 （2）申請の際は 67 ページの始末書（記載例参照） を必ず添付すること。 （3）譲受消費許可で消費許可証と合わせて譲受許可証も事故にあった時は69ページ記載の譲受許可証再交付申請も併せて行らこと。	1 再交付申請 記載方法1の（1）（3）に該当するときはその旨を遅滞なく警察官又は海上保安官に届け出こと。 （2）の場合は申請時に旧許可証を添付すること。 2 再交付を受けた後 許可証の再交付を受けた後旧許可証を発見した ときは，5日以内に旧許可証を交付先に返納する こと。

\times 整理番号						
\times 受 理 日	年	月	日			

火薬類譲受許可証の譲受先変更願

平成 年 月 日

兵 庫 県 知 事 殿県民局長 殿

記 載 方 法	備 考
1 譲受先変更 許可を受けた際譲受許可証に記載されていた譲受先に変更が生じた場合この様式を使用すること。 2 許可証の提出 願書提出の際許可証も同時に提出すること。 3 残火薬類保管引受書 変更になった場合新しい販売店の残火薬類保管引受書添付すること。	譲受先が複数の場合は，その譲受先を記入するこ と。

\times 整理番号			
\times 受 理 日	年	月	日

火薬類消費計画書記載事項変更届

平成 年 月 日
兵 庫 県 知 事 殿
県民局長 殿

申請者 $\bigcirc \bigcirc$ 建設株式会社 $\Delta \triangle$ 作業所
（代表者）現場代理人 $\square \square$ 太 郎 ©

記 載 方 法	備 考
1 変 更 届 火薬類の消費の方法並びに火薬類を取扱う必要 のある者の氏名に変更が生じた場合この様式を用 いること。 2 変更内容に伴なら添付書類 （1）消費の方法の変更の場合 ＂火薬類消費計画書その $1=$ 消費の方法＂（17頁） の従前と変更後をそれぞれ添付すること。 （2）火薬類取扱従事者の変更の場合 （1）火薬類取扱従事者に交代があった場合は記載欄に＂従事者の交代＂と記入し新旧の＂火薬類消費計画書その $2=$ 火薬類取扱者名簿＂（23頁） をそれぞれ添付すること。 （2）火薬類取扱従事者の追加もしくは削除の場合記載欄に＂追加＂もしくは，＂削除＂と記入し新の＂火薬類消費計画書その $2=$ 火薬類取扱者名簿＂のみを添付すること。 （3）取扱者の変更が保安責任者の選解任を伴う変更であれば別途，選解任届を提出すること。	変更届では不可の場合 （1）火薬類の種類及び数量，目的，場所，日時な らびに危険予防の方法に変更のあった場合は変更届では不可であって再許可申請を行らこと。 （2）消費の方法のらち1日の最大消費量の変更に伴なって火薬類取扱所の存置量が変更する場合は別途火薬類取扱所設置場所等変更届を提出すること。（77頁参照）

事業所名

（代表者）$\quad \square$	\square	武 雄	（変更後）

代 表 者 等 変 更 届

平成 8 年 2 月 1 日付産保第○○号をもつて許可になった火薬類譲受許可許可証の代表者等を下記のとおり変更いたしましたのでお届けいたします。

1 変 更 事 項 代表者の変更

2 変更年月日 平成8年4月1日より

3 変 更 前 ○ ○ 郎

4 変 更 後 $\square \square$ 武 雄

記 載 方 法	備 考
火薬類譲受許可証 火薬類消費許可申請証 火薬庫設置等許可申請証 の記載事項の変更届はこの様式によること。 1 この記載例は，火薬類譲受許可証の代表者を変更した場合の記載例である。 2 火薬類消費許可申請書又は火薬庫等許可申請書の記載事項変更届の場合は許可になった年月日，許可番号を記入して届出ること。 3 法人の場合，代表者（現場代理人）の変更の ときは改めて委任状を添付すること。	この様式を用いての諸記載事項の変更届は 1 代表者の変更 2 事務所所在地の変更 3 電話番号の変更等である。

\times 整理番号	第		
\times 号			
受 理 日	年	月	日

火薬類取扱所（火工所）設置場所等変更について

平成 年 月 日

兵庫県知事 殿	
県民局長	殿

（代表者）
氏
名
（A1）

このたび火薬類取扱所（火工所）設置場所等を下記のとおり変更しましたのでお届けします。

（注）火工所の存置量の変更は，取扱所を設けない場合に記入すること。

記 載 方 法	備 考
1 変 更 届 （1）この届出の様式を用いるのは次のような場合 である。 （1）火薬類取扱所の位置，構造を変更する場合 （2）火薬類取扱所の最大存置量を変更する場合 （3）定置構造（建物）の火工所の位置構造を変更する場合 （2）該当する項目の従前，変更後の内容を簡潔 に記入すること。 （3）不要な欄は斜線を引いておくこと。 （4）テント式等の移動する火工所の場合であっ て位置の変更を予め届出しているときはこの届出は不要。 2 変更手続 あらかじめ届出ること。ただし，天変地異に よって早急に復旧しなければならないときはこ の限りでない。 3 添付書類 （1）1－（1）－（1）の場合 （1）位置を変更した場合は取扱所付近見取図 （2）構造を変更した場合は取扱所構造図 （2）1－（1）－（3）の場合 （1）位置を変更した場合は火工所付近見取図 （2）構造を変更した場合は火工所構造図	変更に伴ならその他の届出の提出 （1）取扱所の存置量の変更で，1日の最大消費見込量の変更を伴なら場合火薬類消費計画書変更届を別途提出すること。 （2）火薬類取扱所を設けなくてよい場合の火工所で定めてある存置量の変更は，取扱所を設 けなければならない場合もあるので事前に許可する行政庁の担当者に相談すること。

様式第19号（施行細則第20条関係）
火薬 類 消 費 帳 簿

	月	日	受入数量 （弓 け）	消 費 数 量	残 量 （ざ ん）	備	考
		－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
	－	－					
		－					

記 載 方 法	備 考
火薬類消費帳簿 （1）火薬又は爆薬を 1 箇月に 25 kg 以上消費する消費者は，消費帳簿等を備えなければならない。 （2）記載すべき事項は消費した火薬類の種類及 び数量並びに消費の年月日及び場所とするこ と。 （3）保存期間は記載の日から 1 年。 （4）記載事項が法定要件に合致しており，かつ必要に応じ直ちにその記載事項が碓認できる状態によるものであれば，磁気媒体によるデ ーター管理方法でも差し支えない。	（参照） （1）法第41条第1項 （2）規則第56条の5第1項（記載事項） （3）規則第 56 条の 5 第 2 項（保存期間）
	消費帳簿についての留意事項 （1）火薬類取締法第11条の規定により火薬類を貯蔵する場所を所有，又は占有しない消費業者は，1日の消費作業終了後残火薬類が生じた場合，必ずその日のらちに火薬類譲受先販売業者に預け入れること。 （2）残火薬類を火薬類譲受先販壳業者に預け入れ た場合，必ず預かり証を貫っておくこと。

火薬類消費帳簿

兵庫県火薬類施行細則（第20条関係）様式第19号
3 号桐ダイナマイト（ $50 \mathrm{~mm} \times 750 \mathrm{~g}$ ）親ダイ

年 月 日	受入数量 （う け）	消 費 数 量	$\begin{gathered} \text { 残 }{ }^{\text {量 }} \\ \text { (ざ } \mathrm{C}) \end{gathered}$	備 考
$9 \cdot 1 \cdot 9$	22.50	22.50	0	神戸火薬FL320
9－ $2 \cdot 16$	18．75	17.25	1.5	神戸火薬預け
$9 \cdot 3 \cdot 31$	1.513 .50	15.00	0	神戸火薬FL320
8年度計 kg	（A） 54.75	54.75	0	
本	（73）	（73）	（0）	

※ 預け分を受け入れる場合は，左肩に小さめに記入し，受入数量は新たに受け入れた数量のみ記入する。 （消費数量）＝（左肩小書き数量）＋（受入数量）となる。

アンホ（ピース物）（ $50 \mathrm{~mm} \times 750 \mathrm{~g}$ ）増ダイ

年 月 日	受入数量 （う け）	消 費 数 量	$\begin{aligned} & \text { 残 } \quad \text { 量 } \\ & \text { (ざ } \mathrm{C}) \end{aligned}$	備 考
$9 \cdot 1 \cdot 9$	95.25	95.25	0	神戸火薬FL320
9－ $2 \cdot 16$	105.00	93.00	12.0	神戸火薬預け
9－ $3 \cdot 31$	$12.0 \quad 63.00$	75.00		神戸火薬FL320
8年度計 kg	（B） 263.25	263.25	0	
本	（351）	（351）	（0）	

電気雷管（4．5m D S 1段•2段）

年 月 日	受入数量 （う け）	消 費 数 量	残（ざ 量 （さ）	備 考
$9 \cdot 1 \cdot 9$	30	30	0	神戸火薬FL320
$9 \cdot 2 \cdot 16$	25	23	2	神戸火薬預け
$9 \cdot 3 \cdot 31$	218	20	0	神戸火薬FL320
8年度計 個	（C） 73	73	0	

年度の最後の発破で残火薬が出た場合の記載例

$9 \cdot 3 \cdot 31$	30	28	2	神戸火薬預け
8 年度計	98	96	2	
$9 \cdot 4 \cdot 4$	2	19	21	0

※ 月の最後の発破で残火薬が出た場合は，月計の残量欄に残火薬の数量を記入する。
翌月の最初の発破日の記載は，前月最後の発破における残火薬の数量を左肩に小書き受入数量は新た に受け入れた数量のみ記載する。

火薬類消費報告書

兵庫県火薬類施行細則（第21条関係）様式第20号
平成 9 年 4 月 24 日

兵 庫 県 知 事 殿
山手採石株式会社
（代表者）
山 手 太 郎

年度の最後の発破で残火薬が出た場合の記載例 8 年度分

火薬類の種類	繰 越 数 量	受入数量	消 費 数 量	残 量
電 気 雷 管 個		98	96	2

年度最後の発破の	楽を繰り返し	合の記載例	9年度分	
火薬類の種類	繰越数量	受入 数 量	消 費 数 量	残 量
電 気 雷 管 個	2	98	100	0

様式第 20 号（施行細則第 21 条関係）
平成 年 日 日

兵 庫 県 知 事 殿
県民局長 殿
（代表者）
氏
名 © ${ }^{\text {® }}$

火薬 類 消 費 報 告 書（
年度分）

名 称					
事 務 所 所 在 地					
消 費の目 的					
消 費 場 所					
火薬 類 の 種 類	繰 越 数 量	受 入 数 量	消 費 数 量	残	量
火 薬 kg					
爆 薬 kg					
工 業 雷 管 個					
電 気 雷 管 個					
導 火 線 m					
導 爆 線 m					
許可番号及び許可年月日	年	月	日 第	号	

1 用紙の大きさは，日本工業規格 A 4 とする。
2 火薬又は爆薬の数量は，キログラムによるものとする。

消費者は，4月から翌年3月までの間に消費した火薬類の種類毎の数量を集計したものを翌年4月30日 までに県知事（各県民局長）あて報告すること。

消費報告書については，下表の提出時期に報告すること。

		平 成 8 年 度								平 成 9 年 度						備 考
		8	9	10	11	12	1	2	3	4	5	6	7	8	9	
1	消費許可期間提 出 時 期年度中に終了した場合	消費終了														－消費終了報告書と同時報告
2	消費許可期間提 出 時 期 年度を越えて消費を終了し た場合															（1）平成8年9月～平成 9 年 3 月の消費量 を報告 ○2 平成9年4月～平成9年6月の消費量 を報告
3	消費許可期間提出時期 年度を越えて から消費を繙 続する場合	可 O1 $^{\text {c }}$－継緒														－1 報告は不要 ©2 平成8年8月～平成 9 年 3 月の期間 の消費量を報告

3 報告すべき消費者

火薬は爆薬1箇月に25キログラム以上消費
する消費者。

兵 庫 県 知 事 殿
県民局長 殿

事業所名
氏
名
© ${ }^{[1]}$
（代表者）

火薬類消費終了報告書

平成
年
日付第
号をもって火薬類譲受（消費）許可を受

けて火薬類を消費しておりましたが，平成 年 月 日をもって
（1）消費期間が満了した
（2）消費が終了した（火薬類工事完了）
（3）消費を要しなくなった（火薬類工事中止又は廃止）
ので下記のとおり，報告します。

記
1 終了報告時における残火薬類
有 無

2 残火薬類の措置
（1）譲渡許可を受けて販売店へ譲渡す。
（2）廃棄許可を受けて廃棄する。
③ 引続き火薬類譲受消費許可を受けた。

```
備考 1 該当する箇所欄は○印で囲むこと。
```

2 許可証の有効期間満了前でも，消費が終了したとき若しくは消費を要しなくな った場合は，すみやかに報告すること。

3 この報告には必ず許可証を添付し返納すること。

記 載 方 法	備 考
1 火薬類消費終了報告書 （1）この報告書は次の事項に該当する時提出す ること。 （1）消費期間が満了したとき。 （2）火薬類に関する工事が完了したとき。 ③ 火薬類に関する工事を中止若しくは廃止し たとき。 （2）報告書提出の際は必ず許可証をあわせて返納すること。 2 残火薬類の有無 （1）消費終了時に残火薬類の有無にどちらか○ をつけること。 （2）残火薬類があればその措置の方法（1）（2）（3）の いずれかに○をつけること。 ただし長期に渡る土木工事，採石事業であ つて火薬庫，庫外貯蔵所を自社において所有，占有し，消費期間が満了したのち引き続いて火薬工事を行うため譲受消費許可を受けたも のが，（3）に該当する。 （1）譲渡手続の場合は譲渡許可申請書を提出す ること。 （2）廃棄手続の場合は廃棄許可申請書を提出す ること。	消費の許可を受けずに消費している場合（例え ばコンクリート破砕器を同一の消費地において1日 につき150個以下を消費している場合等）もこの様式にて報告すること。

別表第6（施行規則第 35 条関係）

\times 整理番号	第	号	
\times 審査結果			
\times 受 理 日	年	月	
\times 日			
許可番号	第	号	

火薬類譲渡許可申請書

平成 年 月 日

兵 庫 県 知 事 殿
県民局長 殿

兵庫県収入紙ちょう付欄
（代表者）
氏
名
© ${ }^{\text {D }}$
消印はしないこと。

備考 1．この用紙の大きさは，日本工業規格 A 4 とすること。
2．×印の欄は，記載しないこと。

記 載 方 法	備 考
1 火薬類の種類及び数量 消費が終了して生じた残火薬類の種類及び数量を記載すること。	1 目 的 譲受許可を受けた年月日交付番号等を必ず記載し，なぜ火薬類の譲渡許可申請に至ったかを簡潔に記すこと。
2 目 的 譲渡目的を簡潔に記載すること。 3 期 間 譲渡に必要な期間とする。	2 火薬類の所在場所 （1）火薬類の種類，数量によって火薬類の所在場所は火薬庫，庫外貯蔵所，その他の安全な場所の 3 種類に定められている。 （2）所在場所は貯蔵場所の種類まで記すること。
4 火薬類の所在場所 譲渡すべき火薬類の申請時の所在場所を記す こと。 5 その他 譲渡先の住所，名称氏名を明確に記入するこ と。 手数料として定められた額の兵庫県収入証紙 を貼付けること（収入印紙ではありません。）	3 提出先及びあて先 火薬類の譲渡の許可を受けようとする者は，そ の住所を管轄する産業保安課，又は県民局に申請書を提出すること。 この場合において，譲受消費許可を受けた知事又は県民局長と異なる場合はその譲受消費許可証 の写を添付して提出すること。

×整理番号			
\times 受 理 日	年	月	日

甲種

乙種 火薬類取扱（製造）保安責任者免状交付申請書丙種

兵庫県知事 殿

氏 名
© ${ }^{[1]}$

住			

備考 1 この用紙の大きさは，日本工業規格 A 4 とすること。
$2 \times$ 印の欄は，記載しないこと。
3 収入印紙等は，消印しないこと。

記 載 方 法	備 考
1 交付申請 免状の交付を受けようとする者は，この様式 を用いること。 2 交付申請手続 （1）該当の欄（甲，乙，取扱等）を○で囲むこ と。 （2）合格者は，受験地（兵庫県知事）へ合格し たことを証明する書類（合格通知のハガキ） を添えてすみやかに申請すること。 （3）手数料として定められた額の兵庫県収入証紙を貼付けること。（収入印紙ではありま せん。）	

\times 整理番号			
\times 受 理 日	年	月	日

甲種

乙種 火薬類取扱（製造）保安責任者免状再交付申請書丙種

兵庫県収入証紙ちよう付欄消印はしないこと。

兵庫県知事 殿

住			

備考 1 この用紙の大きさは，日本工業規格 A 4 とすること。
$2 \times$ 印の欄は，記載しないこと。
3 甲，乙，丙種及び製造，取扱等該当には○でかこむこと。

記 載 方 法	備 考
2 再交付申請手続 （1）免状が喪失，盗取されたため交付年月日，番号等不明の場合は交付元の都道府県を碓かめて申請すること。 （2）申請の際は次ページの始末書を必ず添付する こと。 （3）手数料として定められた額の兵庫県収入証紙 をちょう付すること。	
	（注）再交付を受けた後 免状の再交付を受けた後旧免状を発見したとき は，5日以内に旧免状を交付先に提出しなければ ならない。

このたび私の不始末により，さきに交付を受けました 甲種 火薬類取扱保安責任

1 事故発生の日時及び場所
（1）日
時
（2）場 所

2 事故の理由

3 届出警察署名及び届出年月日等（紛失•盗難等の場合）
（1）署 名
（2）年 月 日
（3）届出受理番号

> (住 所)
> (氏 名)
> (©)
> 年 月 日
> 兵 庫 県 知 事 殿

記 載 方 法	備	考
始 末 書 （1）この始末書は記載の一例である。		
（2）特に免状を紛失，盗取された場合，その事故の発生状況を詳細に記載すること。 （3）紛失，盗難等の場合事故届を最寄の警察官に届出る必要があるので届出た警察署，届出年月日等を記入すること。		

（備 考） 1 甲種•乙種の該当する方を○でかこむこと。
2 書換えの理由を証明する書類を添付のこと。

記 載 方 法	備 考
1 記載事項の変更及び書換申請 変更及び書換申請を行うことのできるのは次 の事例に限られる。 氏名を変更したとき。 2 書換理由 （1）書換の理由を詳細に記入すること。 （2）書換の理由を証明する書類（戸籍抄本等） を必ず添付のこと。 3 免状 申請の際本免状を必ず添付のこと。	書換理由記載例 （1）婚姻による氏の変更 （2）養子縁組による氏の変更 （3）復籍による氏の変更 （4）離籍による氏の変更

事 故 報 告

兵 庫 県 知 事 殿
報告者
氏
名 ©

火薬類による事故が下記のとおり発生しましたので火薬類取締法第 46 条の規定により報告します。

記

1 事故発生日時

平成

> 年

> 月

日
午前
午後
時
分

2 事故発生場所

3 被害の状況

保 安 管 理 の組 織

保安管理組織の一例を示すと次のようなものがある。しかし事業所の規模により若干異な り，また，企業の実情に即応したものとすべきである。
（1）少量消費者
（1日に25kg以下の火薬類を消費する場合の
組織図の一例）

火			工
出	納	責	任
者			
火	工	作	業
員			
運	搬	員	

庫 外 貯 蔵 所
出納責任者を定め，保安責
任者が監督する。
又は保安責任者が記帳する。

発	破 場 所	
発破作業指揮者		
発破作業記録者		
発	破	技
士	士	
運	搬	員

帳 簿

火薬類取扱所
火 工 所
発破場所（切羽）

帳簿の保存期間
（2）最大消費量
（1日に 25 kg をこえる火薬類を消費する場合の組織図の一例）

火薬類の受払い及び消費残数量をその都度明確に記録
火薬類の受払い及び消費残数量をその都度明確に記録
火薬類の受渡し数量，消費残数量及び発破孔又は薬室に対する
装てん方法をそのつど記録
記載の日から1年間

24．仮締切堤設置基準（案）

仮締切設置基準（案）の改定について

平成26年12月11日

1 目 的

河川区域及びその周辺で行われる工事において，その施工期間中における治水上の安全を確保するため，仮締切を設置する場合の基準を定めるものである。

また，出水期（融雪出水等のある地方ではその期間を含む）においては河道内 の工事を行わないものとする。但し，施工期間等からやむを得ないと認められる場合は，治水上の安全を十分確保して実施するものとする。
＊ここでいら治水上の安全を確保すべき対象は，堤内地及び既存の河川管理施設等のことである。

2 適用範囲

この基準は河川区域内及びその周辺で行われる工事に伴い設置する河川堤防に かわる仮締切に適用する。

3 仮締切の設置

河川堤防にかかる仮締切は次の各号の一つに該当する場合に必ず設置するもの とする。但し，堤防開削によって洪水または高潮被害の発生する危険が全く無い場合は除く。
（1）河川堤防を全面開削する場合
（2）河川堤防を部分開削するもののうち，堤防の機能が相当に低下する場合
※堤防の機能が相当に低下する場合とは設計対照水位（後述）に対して，必要な堤防断面が確保されていない場合をいう。

4 仮締切の構造

4－1 構造形式
（1）堤防開削を行う場合
既設堤防と同等以上の治水の安全度を有する構造でなければならない。特 に出水期間における仮締切は鋼矢板二重式工法によることを原則とし，地質等のために同工法によりがたい場合は，これと同等の安全度を有する構造と する。

なお，土堤による仮締切の場合は法覆工等による十分な補強を施し，かつ川裏に設けるものとする。但し，河状等から判断して流下能力を阻害しない場合であって，流勢を受けない箇所についてはこの限りではない。

異常出水等，設計対象水位を超過する出水に対しては，堤内地の状況等を踏まえ，応急対策を考慮した仮締切構造を検討する。

部分開削の場合は，仮締切の設置の他，設計対象水位に対して必要な堤防断面を確保する措置によることができる。
※ここでいう出水への対策とは，台風の接近などによる河川水位の上昇に備 え，仮締切の上に土のうなど設置する対策をいう。 ※設計対象水位（後述）
（2）堤防開削を行わない場合
流水の通常の作用に対して十分安全な構造とすると共に，出水に伴い周辺 の河川管理施設等に影響を及ぼさない構造とする。

4－2 設計対象水位

（1）堤防開削を伴う場合
（1）出水期においては計画高水位（高潮区間にあたつては計画高潮位）とする。
（2）非出水期においては非出水期間の既往最高水位または既往最大流量を仮締切設置後の河積で流下させるための水位のうちいずれか高い水位とする。但 し，当該河川の特性や近年の出水傾向等を考慮して変更することができる。 なお，既往水文資料の乏しい河川においては，近隣の降雨資料等を勘案し，十分安全な水位とすることができる。
（3）出水期，非出水期に係わらず，既設堤防高が（1）（2）より求められる水位より低い場合は，既設堤防高とすることができる。
（2）堤防開削を伴わない場合
出水期，非出水期を問わず，工事施工期間の過去 5 ヶ年間の時刻最大水位 を目安とする。但し，当該水位が 5 ヶ年間で異常出水と判断される場合は，過去 10 ヶ年の 2 位の水位を採用することができるものとする。

なお，既往水文資料の乏しい河川においては，近隣の降雨資料等を勘案し，十分安全な水位とすることができる。

4－3 高 さ

（1）堤防開削を伴う場合
（1）出水期においては既設堤防高以上とする。
（2）非出水期においては設計対象水位相当流量に余裕高（河川管理施設等構造令第 20 条に定める値）を加えた高さ以上とし，背後地の状況，出水時の応急対策等を考慮して決定するものとする。但し，既設堤防高がこれより低くな る場合は既設堤防高とすることができる。
＊ここでいう出水時の応急対策とは，台風接近時などに河川水位の上昇に備 え，仮締切の上に土のらを設置するなどの対策をいう。
（2）堤防開削を伴わない場合
出水期，非出水期を問わず $4-2$（2）で定めた設計対象水位とする。但し，波浪等の影響等これによりがたい場合は，必要な高さとすることができる。

なお，本基準の目的に鑑み，上記により求めた高さを上回らない範囲で別途定めることができる。
4－4 天端幅
（1）堤防開削を伴う場合
仮締切の天端幅は河川管理施設等構造令第21条に定める値以上とする。但
し，鋼矢板式工法による場合は大河川に於いては 5 m 程度，その他の河川に於いては 3 m 程度以上とするものとし，安定計算により決定するものとする。
（2）堤防開削を伴わない場合
構造の安定上必要な値以上とするものとする。
4－5 平面形状
仮締切の平面形状は流水の状況，流下能力等にできるだけ支障を及ぼさない ものとする。
4－6 取付位置
（1）河川堤防にかわる仮締切
堤防開削天端（ $\mathrm{a}-\mathrm{a}$ ’）より仮締切内側迄の長さ（ B ）は，既設堤防天端
巾または，仮締切堤の天端巾（A）のいずれか大きい方以上とする。
＊仮締切の現況堤防との接続は矢板を現況堤防に嵌入させてもよい。但し嵌入させた場合は後述する7堤体の復旧に従って矢板の引き抜きによる堤体のゆるみ及び基礎地盤のゆるみに対する補強対策を行うものとする。

5 流下能力の確保と周辺河川管理施設等への影響

5－1 堤防開削を伴う場合
（1）出 水 期
仮締切設置後の断面で一連区間の現況流下能力が確保されていることを確認し，不足する場合は河道掘削，堤防嵩上げ等の対策を実施するものとする。
（2）非出水期
仮締切設置後の断面で 4－2（1）（2）で定める仮締切設計対象水位時の洪水
流量に対する流下能力が一連区間において確保されていることを確認し，不
足する場合は河道掘削，堤防嵩上げ等の対策を実施するものとする。
5－2 堤防開削を伴わない場合
（1）出水期
仮締切設置後の断面で一連区間の現況流下能力を確保することを原則とし，不足する場合は適切な対策工を施すと共に，出水期の水没に伴い周辺の河川管理施設等に被害を及ぼすことのないよう仮締切自体の構造に配慮すること とする。
（2）非出水期
仮締切設置後の断面で非出水期期間中の最大流量に対する流下能力を一連区間において確保することを原則とし，不足する場合は適切な対策を施すと共に，出水期の水没に伴い周辺の河川管理施設等に被害を及ぼすことのない よう仮締切自体の構造に配慮することとする。
＊流下能力の算定は不等流計算等により行うことができる。
＊出水の状況によっては仮締切周辺の河川管理施設等に被害を生じる場合が あるため，必要に応じて対策を施す。
＊堤内地盤高が各々の場合で想定される水位以上である場合はこの限りでは ない。

6 補 強

川表側の仮締切前面の河床及び仮締切取付部の上下流概ね $\mathrm{D}=2 \mathrm{~A}$ の長さの法面は設計対象水位以上の高さまで鉄線蛇篭等で補強するものとする。

また，仮締切を川裏に設置する場合には，堤防開削部の法面は設計対象水位以上の高さまで鉄線蛇篭等により補強するものとする。

7 堤体の復旧

仮締切撤去後の堤体部は表土 1 m 程度を良質土により置き換え，十分に締固め復旧すると共に，必要に応じて堤防及び基礎地盤の復旧も行らものとする。 なお，水衝部では川表側の法面は，ブロック張等で法覆を施すものとする。

8 その他

この基準は，一般的基準を示したもので，異常出水や背後地の著しい変化等に より，これによることが適当でない場合には治水上の安全を十分考慮し，別途措置するものとする。

25．堤 防 余 盛 基 準

堤防余盛基準

1 余盛は，堤体の圧縮沈下，基礎地盤の圧密沈下，天端の風雨等による損傷等を勘案して通常の場合は別表に掲げる高さを基準とする。ただし，一般的に地盤沈下の甚だしい地域，低湿地等の地盤不良地域における余盛高は，さらに余裕を見込んで決定するものとする。
2 余盛高は堤高の変動を考慮して支川合流点，堤防山付，橋梁等によって区分さ れる一連区間（改修計画における箇所番号区間を標準とする。）毎に定めるものと する。
3 余盛高の基準となる堤高は，対象とする一連区間内で，延長500メートル以上の区域についての堤高の平均値が最大となるものを選ぶものとする。
4 余盛のほかに堤防天端には排水のために 10% 程度の横断勾配をつけるものとす る。
5 残土処理等で堤防断面をさらに拡大する場合にはこの基準によらないことがで きる。
別表 余盛高の標準
（単位 cm）

$\begin{aligned} & \text { 堤 体 の土質 } \\ & \text { 地 盤 の 地 質 } \end{aligned}$		普 通土		砂－砂 利	
		普通土	砂 •砂利	普通土	砂•砂利
堤	3 m 以下	20	15	15	10
	3～5mまで	30	25	25	20
高	5～7mまで	40	35	35	30
	7 m 以上	50	45	45	40

注）1．余盛の高さは，堤防法肩における高さをいう。
2．かさ上げ，拡幅の場合の堤高は，垂直盛土厚の最大値をとるものとす る。

26．土木請負工事における安全•訓練等の実施について

土木請負工事における安全•訓練等の実施について

土木請負工事の施工に際しては，これまでも安全に配慮した工事の実施に努めて きたところですが，一層の安全を確保するため土木請負工事の各現場において，工事の内容に応じた安全•訓練等を下記のとおり実施することとしましたので通知し ます。

記

1．安全•訓練活動の徹底

土木請負工事の実施に際し，作業の安全を確保するためには，工事関係者はも とより直接作業を行う作業員が安全に対する理解を深めることが最も重要である。

このため，個々の工事現場の作業内容に応じた安全•訓練活動をとおして安全意識の高揚を図り，安全な工事を実施できる体制及び環境を整えることとする。

2．安全•訓練等の積算上の位置付け

工事費の積算において，作業の安全を確保するために必要となる安全•訓練等 に要する費用については，現場管理費の「安全•訓練等に要する費用」に必要額 を見込み現場管理費率を設定している。

3．安全•訓練等の契約図書における取扱い

工事契約に際し，当面の間，特記仕様書に安全•訓練等の実施項目を条件明示 するものとする。

また，安全•訓練等の実施に際しては，個々の工事において工事着手後，原則 として作業員全員の参加により月当たり半日以上の時間を割当てて安全•訓練等 を実施することを義務付けることとする。

4．安全•訓練等の実施状況の確認

安全•訓練等の実施状況については，書類の簡素化に配慮しつつビデオ等又は工事報告（工事月報）に記録し，提出させるものとする。

5．施工計画における安全•訓練等の活動計画の立案

施工に先立ち作成する施工計画書に，個々の工事内容に応じた安全•訓練等の具体的な活動計画を明記し，提出させるものとする。

27．コンクリート副産物の再利用に関す る用途別暫定品質基準（案）

コンクリート副産物の再利用に関する用途別暫定品質基準（案）

建設副産物の再生利用は，環境保全，資源の有効利用，処分場の不足などの事情 から緊急に取り組むべき課題となっている。ここに定める「コンクリート副産物の再利用に関する用途別暫定品質基準（案）」は，当面のコンクリート副産物の再生利用の促進策として，コンクリート用再生骨材，路盤材および埋め戻し材•裏込め材 として再生利用する際の品質基準（案）をとりまとめたものである。

I．コンクリート用骨材

1．再生骨材の品質
（1）再生骨材の品質
a）再生骨材は，表1の品質を満足するものでなければならない。
b）表1の品質を満足しないものあるいは化学的，物理的に不安定な再生骨材はこ れを用いてはならない。ただし，試験結果等から有害な影響をもたらさないもの であると認められた場合には，これを用いてもよい。

表1 再生骨材の品質

項目	再生粗骨材				再生細骨材	
	1 種	2 種		3 種	1 種	2 種
吸水率（\％）	3 以下	3 以下	5 以下	7 以下	5 以下	10 以下
安定性	12 以下	40 以下 （40以下）12 以下 注）	-	10 以下	-	

注）凍結融解耐久性を考慮しない場合。
（解説）
a）再生骨材とは解体したコンクリート塊を破砕，粒度調整をして得られる骨材 で，原骨材とそれに付着したセメントペースト・モルタル分（以下付着モル タルと呼ぶ）からなる。再生骨材の品質は再生骨材に付着しているモルタル の品質や量の影響を著しく受ける。このため，この暫定品質基準（案）では， モルタルの付着量と付着モルタルの品質に関連の深い吸水率および安定性を再生骨材の品質の指標とし，この 2 項目により，再生細骨材を 2 種類，再生粗骨材を 3 種類に分類した。表 1 の吸水率及び安定性の値の上限値は，主と してコンクリートの強度•耐久性に及ぼす影響を考慮して定めたものである。再生粗骨材 2 種については，凍結融解に対する耐久性に関する既往の研究

より図1のように2つに分けた方が合理的であると考えられるため表1のよ うに 2 組とした。

細骨材の吸水率を求めるのに必要な骨材の表面乾燥飽水状態の判定はJIS A 1109 「細骨材の比重及び吸水率試験」に よるものとする。この場合，微粒分が多 いときにはJIS A 1103 「骨材の洗い試験」 に準じて微粒分を除去したものを試料 としてもよい。

図1 吸水率と安定性の関係

再生骨材と普通骨材を混合して用いる場合には，その混合物（以下，混合骨材と呼ぶ）の品質は向上することが考えられるが，ここでは，耐久性等の安全を確保するため，混合骨材中の再生骨材のみの品質を混合骨材の品質と して取り扱うこととした。
なお，再生骨材のらち普通骨材に比べて吸水率の大きいものでは，含水量 の管理が難しく，再生骨材コンクリートの品質を一定に保つためにプレウェ ッチング等の考慮が必要となる場合がある。再生骨材においても 24 時間のプ レウェッチングを行えば，それ以降の吸水はほとんどないと考えてよい。
b）骨材の化学的安定性に関する事項として，アルカリ骨材反応がある。再生骨材は原コンクリートが健全であれば，骨材そのものも化学的あるいは物理的 に安定である可能性が高いが，アルカリ骨材反応は配合等の条件によっては再生骨材コンクリートでも生じる可能性もあり，耐久性が要求される構造物 に再生骨材を用いる場合には，アルカリ骨材反応対策を講じる必要がある。対策としては，次のようなものがある。
（1）骨材のアルカリシリカ反応性試験化学法あるいはモルタルバー法で無害 と認められる骨材のみを用いる。
（2）セメントはJIS R 6501ポルトランドセメントに示される低アルカリ型セメ ントを使用する。

③ セメントはJIS R 5211高炉セメントに適合する高炉セメント（B種またはC種），もしくは混合材を混合したセメントでアルカリ骨材反応抑制効果の確 かめられたものを用いる。
（4）コンクリートの中の $1 \mathrm{~m}^{3}$ に含まれる総アルカリ量を $\mathrm{Na}_{2} \mathrm{O}$ 換算で 3.0 kg 以下 にする。

しかしながら，再生骨材では骨材の変動が大きいことが予想され，（1）の方法 では正確には骨材そのものの反応性を把握できない可能性も高い。このため，（2）～ （4）の対策をとることが望ましい。なお，現在流通している普通ポルトランドセメン トはほとんどが平成 2 年 2 月 20 日付け建設省技調発第 45 号「コンクリート構造物に

使用する普通ポルトランドセメントについて」の全アルカリ量の規定を満足してお り，よほど単位セメント量が多くない限りはほとんどの配合で（4）の対策が自動的に とれる状況にある。また，現在早強ポルトランドセメントは，普通ポルトランドセ メントより全アルカリ量が若干低い状況にある。
（2）粒 度
a）再生骨材の粒度は表2の範囲を標準とする。ふるい分け試験は，JIS A 1102に よるものとする。
b）粗粒率の変動は，コンクリートの配合を定めるときに用いた粗粒率に比べて，再生細骨材で0．2以上変動してはならない。

表2 再生骨材の粒度範囲

ふるいの呼び名寸法（mm）			ふるいを通るものの重量百分率（\％）								
			50	40	30	25	20	15	10	5	2.5
再 生 粗 骨 材	最 大 寸 法 （mm）	40	100	$\begin{gathered} 95- \\ 100 \end{gathered}$			$\begin{gathered} 35- \\ 70 \end{gathered}$		$\begin{gathered} 10- \\ 30 \end{gathered}$	$\begin{gathered} 0- \\ 5 \end{gathered}$	
		25			100	$\begin{gathered} 95- \\ 100 \end{gathered}$		$\begin{gathered} 30- \\ 70 \end{gathered}$		$\begin{gathered} 0- \\ 10 \end{gathered}$	$\begin{gathered} 0- \\ 5 \end{gathered}$
		20				100	$\begin{gathered} 90- \\ 100 \end{gathered}$		$\begin{gathered} 20- \\ 55 \end{gathered}$	$\begin{gathered} 0- \\ 10 \end{gathered}$	$\begin{gathered} 0- \\ 5 \end{gathered}$

ふるいの呼び 寸法 (mm)	ふるいを通るものの重量百分（\％）						
	10	5	2.5	1.2	0.6	0.3	0.15
再生細骨材	100	$90-$	$80-$	$50-$	$25-$	$10-$	$2-$
		100	100	90	65	35	15

（解説）
a）再生骨材の粒度については普通骨材と基本的には同様と考えてよい。普通骨材と再生骨材を混合使用する場合にも粒度の範囲は表2に示すものとしてよ い。
b）再生骨材の場合も粒度の変動は小さくなるようにしなければならない。しか し，変動が大きく，コンクリートの配合を定めるときに用いた骨材に比べて，粗粒率が細骨材で0．2以上変動した場合にはコンクリートのワーカビリティ ーが変動するので配合を改めなければならない。
なお，再生骨材の粒度分布は砕石•砕砂のそれと同様の考え方ができるも

のとし，JIS A 5005「コンクリート用砕石及び砕砂」の粒度分布を用いるこ ととした。
（3）コンクリートに対する有害物含有量の限度
コンクリートに対する有害物の含有量は，表3の値とする。

表3 有害物の含有量（重量百分率）（単位：\％）

		再生粗骨材 $1,2, ~ 3$ 種	再生細骨材 1,2 種
洗い試験で失 われるもの	コンクリートの表面がすり へり作用を受ける場合	1.5 以下	5 以下
	その他の場合	1.5 以下	7 以下

（解説）
ここでは，コンクリートの物性あるいはセメントの硬化に影響を及ぼす有害物 の，再生骨材中含有量の限度について規定している。再生骨材に含まれる有害物 は，原コンクリートに付着してきて十分に取り除かれなかった土と破砕によって生じた微粒分が主なものである。この他，海岸地域等に建設されたコンクリート構造物では海からの飛来塩分によってコンクリート表面部に比較的高い濃度の塩分を含むことがある。本暫定品質基準（案）では，この塩分を含有するモルタル分は再生細骨材に多く含まれることから，鉄筋コンクリートには用いないことと した。また，粗骨材に関しては，影響を及ぼす付着モルタル分が処理段階で十分取り除かれた再生粗骨材 1 種のみ使用可能とした。このため塩分によって鉄筋に障害を生ずる恐れはほとんどないと考えられる。この他の有害物は正規に造られ た原コンクリートでは問題になることは少ないと考えられるため，本暫定品質基準（案）では有害物含有量の限度を洗い試験で失われるものについてのみ規定し た。

洗い試験で失われる物のらち，破砕粉は破砕の際に比較的多量に生じ，かなり の部分は除去されるが，残留したものも配合には若干の影響を与えるものの，コ ンクリートの強度•耐久性に与える影響は少なく，このため，砕石および砕砂に おける有害物含有量の最大値を適用した。

また，再生骨材の原料となる原コンクリートにアスファルトやレンガが混入し て，これらが事前に除去されなかった場合，再生骨材コンクリートの品質に悪影響を与える。このため，こうした混在物は事前にできる限り取り除かなければな らない。

2．再生骨材コンクリート
（4）再生骨材コンクリートの品質
a）再生骨材コンクリートの種類は表 4 によることを原則とする。ただし，別途検討を行いその構造物の使用条件下で何ら問題なく使用できると認められた場合に は，表 4 に示す種類あるいは骨材の組合せに限定されなくともよい。

表4 再生骨材コンクリートの種類

再生骨材コンク リートの種類	再生骨材コンク リートの用途	使用粗骨材	使用細骨材
I	鉄筋コンクリート， 無筋コンクリート等	再生粗骨材 1 種	普通骨材
II	無筋コンクリート等	再生粗骨材 2 種	普通あるいは 再生細骨材 1 種
III	捨てコンクリート等	再生粗骨材 3 種	再生細骨材 2 種

b）重要構造物に使用する再生骨材コンクリートはAEコンクリートを原則とし，か つ耐久性を考慮した水セメント比としなければならない。
（解説）
再生骨材コンクリートでは，強度は再生骨材の付着モルタル部分に支配される ため，セメント水比を大きくしても普通コンクリートほど強度は大きくならない。 この基準ではこれまでに得られた知見やデータをもとに，大幅に単位水量を増や さずに再生骨材を使用できる範囲を考慮し，かつ構造物の強度や耐久性に問題を生じないよう，また経済性等を考慮して，表 4 のような骨材の組合せと用途を示 した。

再生骨材コンクリートでは，高強度化を期するのは品質的にも経済的にも不利 で，従って合理的に使用される範囲も限定される。合理的に使用できる設計基準強度の目安を参考までに示すと以下の通りである。

再生骨材コンクリート I ：180～ $210 \mathrm{kgf} / \mathrm{cm}^{2}$

$$
\text { II : } 160 \sim 180 \mathrm{kgf} / \mathrm{cm}^{2}
$$

III ： $160 \mathrm{kgf} / \mathrm{cm}^{2}$ 末満
それぞれの用途に対応する構造物の種類の例としては解説表 1 に示すものがあ る。

コンクリートの耐久性を確保するためには，骨材の耐久性とともにコンクリー ト自体の空気量および水セメント比にも配慮しなければならない。このため重要

構造物に使用する再生骨材コンクリートはAEコンクリートとし，水セメント比は関連する基準に示された最大値以下とする。

普通骨材を再生骨材と混合して用いる場合には再生骨材のみを用いる場合より強度発現が大きくなる傾向にあるが，コンクリートの品質としては強度のみなら ず耐久性等を考慮しなければならない。再生骨材の品質はコンクリートの耐久性 に大きく影響するため，再生骨材と普通骨材を混合使用した場合でも混合比に関係なく，混合骨材中の再生骨材の種類のみで再生骨材コンクリートの種類を決定 することとした。

また，原コンクリート中に大量の塩分がしみこんでいることも予想して，鉄筋 コンクリートに再生骨材を使用する場合にはモルタル分を十分に落とした再生粗骨材 1 種は使用できるものとし，再生細骨材は用いないこととした。

解説表1 再生骨材コンクリートの適用構造物の例

再生骨材コンクリートの種類	構 造 物
I	橋梁下部工，擁壁，トンネルライニング等

II．路 盤 材

コンクリート副産物の路盤材料への利用に関しては，「プラント再生舗装技術指針」（日本道路協会，1992．12）があり，コンクリート副産物の破砕物も舗装要綱の クラッシャランまたは粒度調整砕石の規格を満たせば使用できるようになっている。以下に「プラント再生舗装技術指針」に規定されている品質基準を示し，コンク リート副産物の路盤材への使用にあたつての暫定品質基準案とする。

1．下層路盤材

下層路盤に使用する再生材の品質は，表5の規格を満足するものとする。

表5 下層路盤に用いる再生材の品質

項目 適用	工法•材料	修正CBR （\％）	PI （塑性指数）	一軸圧縮強さ材齢kgf／cm²（MPa）
簡易舖装	再生クラッシャラン	10以上［20以上］	9 以下	－
アスファル ト舗装	再生クラッシャラン	20以上［30以上］	6 以下	－
	再生セメント安定処理	－	－	7 日10（1．0）
	再生石灰安定処理	－	－	10日 7 （0．7）
$\begin{aligned} & セ メ ン ト コ ~ \\ & \text { ンクリート } \end{aligned}$ 舗装	再生クラッシャラン	20以上［30以上］	6 以下	－
	再生セメント安定処理	－	－	7 日10（1．0）
	再生石灰安定処理	－	－	10日 5（0．5）

注）
（1）アスファルトコンクリート再生骨材を含む再生クラッシャランを用いる場合で，上層路盤•基層•表層の合計厚が次に示す数値よりも小さい場合には修正CBRの基準値に［ ］内の数値を適用する。

北海道地方 $\cdots 20 \mathrm{~cm}$
東北地方 $\cdots 30 \mathrm{~cm}$
その他の地域… 40 cm
なお， $40^{\circ} \mathrm{C}$ でCBR試験を行ら場合は通常の值を満足すればよい。
（2）再生クラッシャランに用いるセメントコンクリート再生骨材は，すりへり減量が 50% 以下でなければなら ない。試験方法はロサンゼルスすりへり減量試験〔粒度は道路用硨石S－13（ $13-5 \mathrm{~mm}$ ）のもの〕とする。
（3）再生クラッシャランの材料として路盤再生骨材もしくは路盤発生材を用いる場合のみPIの規定を適用す る。
（4）セメントコンクリート舗装に再生クラッシャランを用いる場合，詞験路盤より支持力が碓認できるときや過去の例で経験的に耐久性が確認されているときは，425 $\mu \mathrm{m}$ ふるい通過分のPIを 10 以下としてもよい。また この場合で $425 \mu \mathrm{~m}$ ふるい通過量が 10% 以下の材料ではPIが 15 のものまで用いることができる。

上層路盤に使用する再生材の品質は，表6の規格を満足するものとする。

表6 上層路盤に用いる再生材の品質

適用 項目	工法•材料	修正CBR （\％）	一軸圧縮強さ $\mathrm{kgf} / \mathrm{cm}^{2}(\mathrm{MPa})$	マーシヤル安定度 $\operatorname{kgf}(\mathrm{kN})$	その他の品質
簡易舗装	再生粒度調整砕石	60以上［70以上］	－	－	PI 4 以下
	再生加熱アスファルト安定処理混合物	－	－	$\begin{gathered} \text { 350以上 } \\ \text { (3.43以上) } \end{gathered}$	$\begin{gathered} \text { フロー値 } 10 ~ 40 \\ (1 / 100 \mathrm{~cm}) \\ \text { 空隙率 } 3 \sim 12 \% \end{gathered}$
	再生セメント安定処理混合物	－	材齢7日 $25(2.5)$	－	－
	再生石灰安定処理混合物	－	材齢10日 7 （0．7）	－	－
アスファ ルト舗装	再生粒度調整砕石	80以上［90以上］	－	－	PI 4 以下
	再生加熱アスファル 安定処理混合物	－	－	$\begin{gathered} \text { 350以上 } \\ \text { (3.43以上) } \end{gathered}$	$\begin{gathered} \text { フロー値 } 10 ~ 40 \\ (1 / 100 \mathrm{~cm}) \\ \text { 空隙率 } 3 \sim 12 \% \end{gathered}$
	再生セメント安定処理混合物	－	材齢7日 $30 \quad(2.9)$	－	－
	再生石灰安定処理混合物	－	材齢10日 $10(1.0)$	－	－
$\begin{aligned} & \text { セメント } \\ & \text { コンクリ } \\ & \text { ート舗装 } \end{aligned}$	再生粒度調整砕石	80以上［90以上］	－	－	PI 4以下
	再生加熱アスファルト安定処理混合物	－	－	$\begin{gathered} \text { 350以上 } \\ \text { (3.43以上) } \end{gathered}$	$\begin{aligned} & \text { フロー値 } 10 \sim 40 \sim 40 \\ & (1 / 100 \mathrm{~cm}) \\ & \text { 空隙率 } 3 \sim 12 \% \end{aligned}$
	再生セメント安定処理混合物	－	材齢7日 $20(2.0)$	－	－
	再生石灰安定処理混合物	－	材齢10日 $10 \quad(1.0)$	－	－

注）
（1）アスファルトコンクリート再生骨村を含む再生粒度調整䂤石は，修正CBRの基準值に［ ］内の数值を適用する。ただし， $40^{\circ} \mathrm{C}$ でCBR詞験を行ら場合は，通常の値を満足すればよい。
（2）上層路盤に用いるセメントコンクリート再生骨材は，すりへり減量が 50% 以下でなければならない。試験方法はロサンゼルスすり～り減量詞験〔粒度区分は道路用硨石S－13（ $13 \sim 5 \mathrm{~mm}$ ）のもの〕とする。
（3）再生粒度調整砕石の材料として路盤再生骨材もしくは再生路盤材を用いる場合のみPIの規定を適用する。
（4）セメントコンクリート舗装に再生粒度調整砤石を用いた場合は，表6 の規格を満足するものを用いること が望ましいが，それ以外の材料であっても試験路盤により支持力が確認されている場合は，425 $\mu \mathrm{m}$ ふるい通

過分のPIを6以下としてもよい。また，この場合で $425 \mu \mathrm{~m}$ ふるい通過量が 10% 以下の材料ではPIが 10 のもの まで用いることができる。

参考表1 再生クラッシャランの望ましい粒度範囲

ふるい目	粒度範囲 （呼び名）	$\begin{array}{r} 40 \sim 0 \\ (\mathrm{RC}-40) \end{array}$	$\begin{array}{r} 30 \sim 0 \\ (\mathrm{RC}-30) \end{array}$	$\begin{array}{r} 20 \sim 0 \\ (\mathrm{RC}-20) \end{array}$
通過質量貧分	53 mm	100		
	37.5 mm	95～100	100	
	31.5 mm	－	$95 \sim 100$	
	26．5mm	－	－	100
	19 mm	$50 \sim 80$	55～85	$95 \sim 100$
\%	13.2 mm	－	－	$60 \sim 90$
	4． 75 mm	$15 \sim 40$	15～45	20～50
	2． 36 mm	5～25	5～30	10～35

〔注〕再生骨材の粒度は，モルタル粒などを含んだ解砕されたままの見かけの骨材粒度を使用する。

参考表2 再生粒度調整砕石の望ましい粒度範囲

		$\begin{array}{r} 40 \sim 0 \\ (\mathrm{RM}-40) \end{array}$	$\begin{array}{r} 30 \sim 0 \\ (\mathrm{RM}-30) \end{array}$	$\begin{array}{r} 25 \sim 0 \\ (\mathrm{RM}-25) \end{array}$
$\begin{aligned} & \text { 通 } \\ & \text { 過 } \\ & \text { 貣 } \\ & \text { 分 } \\ & \text { 膟 } \\ & \text { \% } \end{aligned}$	53 mm	100		
	37.5 mm	95～100	100	
	31.5 mm	－	95～100	100
	26．5mm	－	－	95～100
	19 mm	60～90	60～90	－
	13.2 mm	－	－	$55 \sim 85$
	4． 75 mm	$30 \sim 65$	$30 \sim 65$	$30 \sim 65$
	2． 36 mm	$20 \sim 50$	$20 \sim 50$	$20 \sim 50$
	$425 \mu \mathrm{~m}$	$10 \sim 30$	$10 \sim 30$	$10 \sim 30$
	$75 \mu \mathrm{~m}$	$2 \sim 10$	2～10	2～10

〔注〕アスファルトコンクリート再生骨材の粒度は，モルタル粒などを含んだ解砕されたままの見 かけの骨材粒度を使用する。

III．埋め戻し材•裏込め材

コンクリート副産物の再生クラッシャランおよび再生砂を埋め戻し材•裏込め材 として利用するにあたっての品質基準を以下のように規定する。
（a）再生クラッシャラン：最大粒径は目的に応じて適宜選択する。
（b）再生砂：細粒分（ $75 \mu \mathrm{~m}$ 以下）の含有率（重量百分率）の上限を 50% 未満とする。
（解説）
再生砂については，再生処理方法等を考えると埋め戻し材•裏込め材として問題を生ずることは少ないと考えられる。ここでは $75 \mu \mathrm{~m}$ 以下の細粒分があまりにも多くなることは，埋め戻しや裏込めを行った構造物の長期の安定性等を考慮して避けるべきものと判断し，参考図1に示した土の工学的分類における粗粒土に基 づき，上述のような品質基準を定めた。

$5 \mu \mathrm{~m}$		$75 \mu \mathrm{~m} \quad 42$	$425 \mu \mathrm{~m}$	2 mm	4． 75 mm	19 mm
		細砂	粗砂	細礫	中礫	粗礫
粘土	シルト	砂		磼		

（a）土質材料の粒径区分とその呼び名

（b）土の工学的分類体系（大分類）

（c）塑性図

参考図1 土の工学的分類方法（案）

